找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 2270|回复: 2
打印 上一主题 下一主题

[专家学者] 吉林大学材料学院金属材料工程系郎兴友

[复制链接]

248

主题

251

帖子

259

积分

中级会员

Rank: 3Rank: 3

积分
259
跳转到指定楼层
楼主
发表于 2017-3-28 09:42:19 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
郎兴友吉林大学教授。国家万人计划青年拔尖人才(第二批),吉林大学汽车材料教育部重点实验室教授、博士生导师,国家自然科学基金优秀青年基金获得者(第三批)、教育部“长江学者奖励计划”青年学者(第二批)。主要从事介观材料相变热力学、材料表/界面科学、多孔金属、合金和复合物的制备及应用研究。在Nature Nanotechnol.、Nature Mater.、Nature Commun.等著名SCI学术期刊上发表学术论文60余篇,受邀撰写外文书章节2章。SCI被他人引用3400余次,单篇最高引用1100余次,H=26。获授权美国专利和日本专利各1件,授权中国国家发明专利4件。


姓名:        郎兴友        
性别:        男
职称:        教授
所在系别:        金属材料工程系
是否博导:        是
最高学历:        研究生
最高学位:        博士
电话:        0431-85095874
Email:        xylang@jlu.edu.cn
详细情况
所在学科专业:        金属材料
所研究方向:        功能金属材料;功能金属基复合物材料
讲授课程:        《固态相变原理》


教育经历:        2002年09月-2007年06月:吉林大学 工学博士。
1998年09月-2002年06月:吉林大学 理学学士。
工作经历:        2011年07月-至今:教授,吉林大学材料科学与工程学院,汽车材料教育部重点实验室。
2010年10月-2011年06月:助理教授,日本国立东北大学原子分子材料科学高等研究机构。
2009年10月-2010年10月:助手,日本国立东北大学原子分子材料科学高等研究机构。
2007年10月-2009年10月:日本学术振兴会(Japan Society for the Promotion of Science,JSPS)外国人特别研究员,日本国立东北大学金属材料研究所。


科研项目:        
(1).教育部"长江学者奖励计划"青年学者(2017.3.1-2020.2.28)
(2).国家自然科学基金重点项目(2017.01-2021.12),320万,第一参加人;
(3).吉林省高校创新团队(2016.01-2018.12),负责人;
(4).国家特支计划(万人计划)青年拔尖人才(2016.01-2018.12),190万,负责人;
(5).国家自然科学基金优秀青年基金(2015.01-2017.12),100万,负责人;
(6).教育部科学技术研究重大项目(2012.09-2015.08),100万,负责人;
(7).国家自然科学基金青年基金(2013.01-2015.12),25万,负责人;
(8).高等学校博士学科点专项科研基金(2013.01-2015.12),4万,负责人;
(9).教育部新世纪优秀人才支持计划(2011.01-2013.12),50万,负责人;
(10).吉林大学杰出青年基金后备人才培育计划(2015-2017),20万;
(11).吉林大学优秀青年教师培育计划(重点培养阶段,2014-2017),18万;
(12).吉林省高校科研春苗人才&吉林大学优秀青年基金培育计划(2013-2014),10万。


学术论文:        
主要从事介观材料相变热力学,材料表/界面科学,功能金属基复合物的制备及应用研究。在Nature Nanotechnol., Nature Mater., Nature Commun., Adv. Mater., Adv. Sci., Adv. Energy Mater., Adv. Funct. Mater., ACS Nano等SCI学术期刊上发表学术论文50余篇和受邀撰写外文书章节2章。SCI他引2400余次,单篇最高引用800余次。H = 22。获授权美国专利1件、中国国家发明专利2件,申请中国国家发明专利2件。
https://scholar.google.com/citations?user=akkjuuQAAAAJ&hl=zh-CN
(1). G.F. Han, L. Gu, X.Y. Lang*, B.B. Xiao, Z.Z. Yang, Z. Wen, Q. Jiang*, Scalable nanoporous (Pt1-xNix)3Al intermetallic compounds as highly active and stable catalysts for oxygen electroreduction, ACS Applied Materials & Interfaces 8, 32910-32917 (2016).
(2).        T. Cheng, X.Y. Lang*, G.F. Han, R.Q. Yao, Z. Wen, Q. Jiang*, Nanoporous (Pt1-xFex)3Al intermetallic compounds for much enhanced oxygen electroreduction catalysis, Journal of Materials Chemistry A 4, 18878-18884(2016).
(3).        Y.Q. Li, X.M. Shi, X.Y. Lang,* Z. Wen, J.C. Li, Q. Jiang*, Remarkably improving volumetric energy and power of 3D MnO2 microsupercapacitors by tuning crystallographic structures, Advanced Functional Materials 26, 1830-1839(2016).
(4).        X.Y. Lang, B.T. Liu, X.M. Shi, Y.Q. Li, Z. Wen, Q. Jiang*, Ultrahigh-power pseudocapacitors based on ordered nanoporous heterostructures of electron-correlated oxides,Advanced Science 3,1500319 (2016).
https://www.materialsviewschina.com/2016/02/based-on-three-dimensional-heterostructures-of-strongly-correlated-electron-oxides-of-high-power-pseudo-capacitor/
(5).        C. Hou, X.Y. Lang,* Z. Wen, Y.F. Zhu, M. Zhao, J.C. Li, W.T. Zheng, J.S. Lian, Q. Jiang*, Single-crystalline Ni(OH)2 nanosheets vertically aligned on three-dimensional nanoporous metal for high-performance asymmetric supercapacitors, Journal of Materials Chemistry A 3, 23412-23419 (2015).
(6).        Y.S. Zhang, J.P. Shi, G.F. Han, M.J. Li, Q.Q. Ji, D.L. Ma, Y. Zhang, C. Li, X.Y. Lang,* Y.F. Zhang*, Z.F. Liu, Chemical vapor deposition of monolayer WS2 nanosheets on Au foils towards direct application in hydrogen evolution,Nano Research 8, 2881-2890 (2015).
(7). X.Y. Lang, G.F. Han, B.B. Xiao, L. Gu, Z.Z. Yang, Z. Wen, Y.F. Zhu, M. Zhao, J.C. Li, Q. Jiang, Mesostructured intermetallic compounds of platinum and non-transition metals for enhanced electrocatalysis of oxygen reduction reaction, Advanced Functional Materials 25, 230-237 (2015).
(8). G.F. Han, B.B. Xiao, X.Y. Lang,* Z. Wen, Y.F. Zhu, M. Zhao, J.C. Li, Q. Jiang,* Self-grown Ni(OH)2 layer on bimodal nanoporous AuNi alloys for enhanced electrocatalytic activity and stability,ACS Applied Materials & Interfaces 6, 16966-16973 (2014).
(9). J.P. Shi, D.L. Ma, G.F. Han, Y. Zhang, Q.Q. Ji, T. Gao, J.Y. Sun, X.J. Song, C. Li, Y.S. Zhang, X.Y. Lang,* Y.F. Zhang,* Z.F. Liu, Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction, ACS Nano 8, 10196-10204 (2014).
(10).        C. Hou, X.M. Shi, C.X. Zhao, X.Y. Lang,* L.L. Zhao, Z. Wen, Y.F. Zhu, M. Zhao, J.C. Li, Q. Jiang,* SnO2 nanoparticles embedded in 3D nanoporous/solid copper current collectors for high-performance reversible lithium storage, Journal of Materials Chemistry A 2,15519 (2014).
(11). H.Y. Fu, X.Y. Lang,* C. Hou, Z. Wen, Y.F. Zhu, M. Zhao, J.C. Li, W.T. Zheng, Y.B. Liu, Q. Jiang,* Nanoporous Au/SnO/Ag Heterogeneous Films for Ultrahigh and Uniform Surface-enhanced Raman Scattering, Journal of Materials Chemistry C 2,7216 (2014).
(12). X.Y. Lang, T. Fujita, A. Hirata, M.W. Chen, Three-dimensional Hierarchical Nanoporosity for Ultrahigh Power and Excellent Cyclability of Electrochemical Pseudocapacitors, Advanced Energy Materials 4, 1301809 (2014).
(13). C. Hou, X.Y. Lang,* Y.Q. Li, G.F. Han, L. Zhao, Z. Wen, Y.F. Zhu, M. Zhao, J.C. Li, J.S. Lian, Q. Jiang,* Integrated solid/nanoporous copper/oxide hybrid bulk electrodes for high-performance lithium-ion batteries, Scientific Reports 3, 2878 (2013).
(14).        X.Y. Lang, H.Y. Fu, C. Hou, G.F. Han, P. Yang, Y.B. Liu, Q. Jiang, Nanoporous gold supported Cobalt oxide microelectrodes for high performance electrochemical biosensors, Nature Communications 4,2169 (2013).
(15).        T. Fujita, P.F. Guan, K. McKenna, X.Y. Lang, A. Hirata, L. Zhang, T. Tokunaga, S. Arai, Y. Yamamoto, N. Tanaka, Y. Ishikawa, N. Asao, Y. Yamamoto, M.W. Chen, Atomic origin of the high catalytic activity of nanoporous gold, Nature Materials 11 (2012) 775-780.
(16).        X.Y. Lang, L. Zhang, T. Fujita, Y. Ding, M.W. Chen, Three-dimensional bicontinuous nanoporous gold/polyaniline hybrid films for high-performance electrochemical supercapacitors, Journal of Power Sources 197 (2012) 325-329.
(17).        X.Y. Lang, A. Hirata, T. Fujita, M.W. Chen, Nanoporous Metal/Oxide Hybrid Electrodes for Electrochemical Supercapacitors, Nature Nanotechnology 7 (2011) 232-236.
[Selected one of favoruite figures from the Letters and Articles that are published since the lauch of Nature Nanotechnology, please see Feature: Ten years in images, Nature Nanotechnology 11 (2016) 836-840]
(18).        Y. Yu,* L. Gu,* X.Y. Lang,* C.B. Zhu, M.W. Chen, J. Maier, Li Storage in Three-dimensional (3D) Nanoporous Au-supported Nanocrystalline Tin, Advanced Materials 23 (2011) 2443-2447.
(19).        H.W. Liu, L. Zhang, X.Y. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q.K. Xue, M.W. Chen, Single molecule detection from a large-scale SERS-active gold-based substrate, Scientific Reports 1 (2011) 112.
(20).        L. Zhang, X.Y. Lang, A. Hirata, M.W. Chen, Wrinkled Nanoporous Gold Films with Ultrahigh Surface-enhanced Raman Scattering Enhancement, ACS Nano 5 (2011) 4407-4413. [Most read articles in August, 2011]
(21).        X.Y. Lang, L.H. Qian, P.F. Guan, J. Zi, M.W. Chen, Localized Surface Plasmon Resonance of Nanoporous Gold, Applied Physics Letters 98 (2011) 093701 (1-3).
[Top 20 Most Downloaded Articles in March, 2011, http://apl.aip.org/features/most_downloaded?month=3&year=2011]
[Top 20 Most Downloaded Articles in September, 2011 http://apl.aip.org/features/most_downloaded]
[Most Downloaded Articles in Biophysics, http://librarians.aip.org/promote/emails/APLSeptember2011.html]
(22).        X.Y. Lang, H.T. Yuan, Y. Iwasa, M.W. Chen, Three-dimensional Nanoporous Gold for Electrochemical Supercapacitor, Scripta Materialia 64 (2011) 923-926.
(23).        X.Y. Lang, P.F. Guan, T. Fujita, M.W. Chen, Tailored Nanoporous Gold for Ultrahigh Fluorescence Enhancement, Physical Chemistry Chemical Physics 13 (2011) 3795-3799.
(24).        X.Y. Lang, P.F. Guan, L. Zhang, T. Fujita, M.W. Chen, Size Dependence of Molecular Fluorescence Enhancement of Nanoporous Gold, Applied Physics Letters 96 (2010) 073701 (1-3).
[also selected for Virtual Journal of Biological Physics Research (March 1, 2010)
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT02000019000005000178000001&idtype=cvips&gifs=yes).]
(25).        X.Y. Lang, H. Guo, L.Y. Chen, A. Kudo, J.S. Yu, W. Zhang, A. Inoue, M.W. Chen, Novel Nanoporous Au-Pd Alloy with High Catalytic Activity and Excellent Electrochemical Stability, Journal of Physical Chemistry C, 114 (2010) 2600-2603.
(26).        Y.F. Zhu, X.Y. Lang, W.T. Zheng, Q. Jiang, Electron Scattering and Electrical Conductance in Polycrystalline Metallic Films and Wires: The Impact of Grain Boundary Scattering Made by the Melting Point, ACS Nano 4 (2010) 3781-3788.
(27).        X.Y. Lang, L.P. Han, Thermal Stability of Nanocrystals Confined in Nanoporous Media, Journal of Physical Chemistry C 113 (2009) 16036-16041.
(28).        X.Y. Lang, P.F. Guan, L. Zhang, T. Fujita, M.W. Chen, Characteristic Length and Temperature Dependence of Surface Enhanced Raman Scattering of Nanoporous Gold, Journal of Physical Chemistry C 113 (2009) 10956-10961.
(29).        X.Y. Lang, L.Y. Chen, P.F. Guan, T. Fujita, M.W. Chen, Geometric Effect on Surface Enhanced Raman Scattering of Nanoporous Gold: Improving SERS Enhancement by Tailoring Ligament and Nanopore Ratios, Applied Physics Letters 94 (2009) 213109 (1-3).
[also selected for Virtual Journal of Nanoscale science & Technology, http://www.vjnano.org/dbt/dbt.jsp?KEY=VIRT01&Volume=19&Issue=23.]
(30).        Y.F. Zhu, X.Y. Lang, Q. Jiang, Alloying Effect on Bandgap Energy of Nanosemiconductor Alloys, Advanced Functional Materials 18 (2008) 1422-1429.
(31).        X.Y. Lang, Z. Wen, Q. Jiang, Dependence of Thermal Stability of Antiferromagnetic Nanocrystals on Size and Magnetic Proximity Effect, Journal of Physical Chemistry C 112 (2008) 4055-4060.
(32).        X.Y. Lang, Y.F. Zhu, Q. Jiang, Nature of Solidification of Organic Liquid Layers, Langmuir (Letter) 23 (2007) 1000-1003.
(33).        X.Y. Lang, W.T. Zheng, Q. Jiang, Dependence of the Blocking Temperature in Exchange Biased Ferromagnetic/Antiferromagnetic Bilayers on the Thickness of the Antiferromagnetic Layer, Nanotechnology 18 (2007) 155701.
(34).        X.Y. Lang, Q. Jiang, Size and Interface Effects on Curie Temperature of Perovskite Ferroelectric Nanosolids, Journal of Nanoparticle Research 9 (2007) 595-603.
(35).        X.Y. Lang, W.T. Zheng, Q. Jiang, Size and Interface Effects on Ferromagnetic and Antiferromagnetic Transition Temperatures, Physical Review B 73 (2006) 224444 (1-8).
[also selected for Virtual Journal of Nanoscale science & Technology, http://scitation.aip.org/dbt/dbt.jsp?KEY=VIRT01&Volume =14&Issue=3.]
(36).        Q. Jiang, X.Y. Lang,Glass Transition of Low-dimensional Polystyrene, Macromolecular Rapid Communications 25 (2004) 825-828.


授权发明专利:
(1).        郎兴友,侯超,赵琳琳,文子,朱永福,赵明,李建忱,蒋青,无缝集成的金属基底/纳米多孔金属/金属氧化物复合电极材料的制备方法和应用,专利号:ZL201310192869.6.
(2).        郎兴友,韩高峰,李苗苗,肖蓓蓓,文子,朱永福,赵明,李建忱,蒋青,双模式介孔铂与非过渡族金属的金属间化合物催化剂的制备方法及其应用,专利号:ZL201410114575.6.
(3). Mingwei Chen, Xingyou Lang, Takeshi Fujita, Nanoporous ceramic composite metal, US Patent, Patent number: 9336958.
著作教材:         
(1). X.Y. Lang and M.W. Chen, Optical Properties and Application of Nanoporous Metals, in Nanoporous gold: From an ancient technology to a high-tech material. A comprehensive introduction into fabrication, characterization, and applications, Chapter 6, ed by Juergen Biener, Marcus Baeumer and Arne Wittstock, (published by Royal Society of Chemistry (RSC), 2011).

(2). L.Y. Chen, X.Y. Lang, M.W. Chen, Dealloyed Nanoporous Metals, Chapter 5 in Nanoporous materials: Synthesis and Applications, ed by Qiang Xu, (published by Taylor and Francis Group, 2012).


获奖情况:        
入选2016年度教育部"长江学者奖励计划"青年学者(第二批,已公示);
入选2015年度"吉林省高校创新团队";
入选国家特支计划(万人计划)青年拔尖人才(第二批);
荣获国家自然科学基金委优秀青年基金(第三批);
入选教育部新世纪优秀人才支持计划;
入选吉林大学优秀青年教师培养计划(重点培养阶段)。


社会兼职:        
Current Nanoscience杂志Editorial Board Member;
中国机械工程学会材料分会第八届委员会委员(理事);
中国机械工程学会,高级会员;
Nature Commun., Adv. Mater., Energy Environ. Sci., ACS Nano等国际学术期刊审稿人。

  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖
回复

使用道具 举报

76

主题

93

帖子

97

积分

注册会员

Rank: 2

积分
97
沙发
发表于 2018-4-23 09:57:11 | 只看该作者
Nature子刊:相变驱动增强多级纳米结构钒氧化物的赝电容能量存储
过渡金属氧化物(TMOs)是一类重要的赝电容材料,因其理论比电容高于碳基材料(5–15μF·cm–2 )约一至两个数量级,在超级电容器中有重要的应用前景。不同于仅具有双电层电容存储特性的碳材料,TMOs可通过阳离子在电极/电解液界面吸附/脱附(氧化还原型赝电容)或/和在界面层嵌入/脱出(嵌入型赝电容)过程中所伴随的金属离子可逆氧化还原反应来存储/释放电荷。以上两类法拉第存储机制可单独或共同地发生在TMOs材料中,具体则依赖于其晶体结构是否将阳离子存储限域于其表面或体内层间间隙/孔隙。然而,在电荷存储/释放过程中无论涉及哪类赝电容机制,电活性的TMOs都需要在充放电过程中发挥其双重作用,即在表面或层间间隙中容纳阳离子,并将电子从氧化还原位点转移到导电材料上。因传统TMOs难以同时满足电子输运和阳离子嵌入/扩散两方面的需求,基于这类材料的超级电容器很难真正实现具有像电池一样的容量和像碳基超级电容器一样的倍率性能的能量存储性能。
近日,来自吉林大学的郎兴友教授和蒋青教授团队在Nature Communications发文,题为:“Extraordinary pseudocapacitive energy storage triggered by phase transformation in hierarchical vanadium oxides”。研究人员研究表明,在电子关联的三氧化二钒中,通过热氧化驱动的刚玉-金红石原位相变可以产生非化学计量金红石型二氧化钒层,该二氧化钒层由准六边形大孔径隧道结构与传统金红石二氧化钒层交替组成。这种独特的结构有助于提高氧化还原反应和阳离子嵌入/扩散动力学,以便在分级异构钒氧化物中实现超高的赝电容储能,从而在水系电解质中实现约1856 F·g–1的高比电容(约为原始三氧化二钒和二氧化钒的六倍)和超高倍率的双极充放电能力。基于该钒氧化物电极的对称赝电容器,具有宽的电压窗口,其功率密度约为280 W·cm-3,体积能量密度约为110 mWh·cm-3,且具有长期循环稳定性。


回复 支持 反对

使用道具 举报

40

主题

127

帖子

155

积分

注册会员

Rank: 2

积分
155
板凳
发表于 2019-9-10 10:43:57 | 只看该作者
2018年自然科学基金面上项目-纳米多孔金属/氧化物复合电极材料可控构筑及其水氧化催化性能
批准号        51871107        学科分类        金属催化材料 ( E010505 )
项目负责人        郎兴友        负责人职称                依托单位        吉林大学
资助金额        60.00万元        项目类别        面上项目       
研究期限        2019 年 01 月 01 日 至2019 年 12 月 31 日

回复 支持 反对

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-4-26 17:43 , Processed in 0.094388 second(s), 37 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表