找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 599|回复: 0
打印 上一主题 下一主题

[材料资讯] 《自然•纳米技术》:二氧化碳电解制纯甲酸技术获得突破

[复制链接]

253

主题

281

帖子

382

积分

中级会员

Rank: 3Rank: 3

积分
382
跳转到指定楼层
楼主
发表于 2021-12-29 08:30:00 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
工业革命以来,随着人类社会的发展和变革,人类对化石燃料的迫切依赖日益增加。然而,化石燃料的燃烧造成大气中二氧化碳气体浓度的增加,进而导致了气候全球变暖。二氧化碳电还原技术可利用清洁能源的可再生电力将二氧化碳转化为高附加值化学品和燃料,为实现人工碳循环提供了可持续发展路径,因此获得了广泛的关注。二氧化碳电还原可以得到多种含碳产物,随着产物碳数的增长,得到单分子产物所需电子数增加,反应的能耗也会相应增加,从经济角度考虑,将二氧化碳转化为甲酸被认为是最有希望实现产业化的路径之一。
       迄今为止,已经报道的二氧化碳电还原中高选择性制甲酸的催化剂包含有铋、锡、铟、铅和钯,但其催化活性较低,偏电流密度普遍低于500毫安每平方厘米,且稳定性较差,寿命一般低于20小时,远达不到工业化标准。相比之下,金属铜对于二氧化碳电还原不仅具有高的催化活性,而且价格低廉,如果能解决选择性驳杂的问题,将有望于实现二氧化碳电还原高效制备甲酸。
        近日,中国科学技术大学曾杰教授、电子科技大学夏川教授、和中国科学院大连化学物理研究所肖建平研究员报道了通过铅、铋、铟单原子修饰改变铜基催化剂在二氧化碳电还原中的选择性并高效制备甲酸的研究,该工作发表在最新一期国际知名期刊《自然•纳米技术》杂志上。
       研究人员通过在二氧化碳电还原条件下原位还原的策略分别得到铅、铋、铟等单原子修饰的铜催化剂。通过球差矫正的高分辨透射电镜和X射线扩展边吸收精细结构证明了单原子均匀分布在铜基底上,此外通过原位X射线近边吸收谱佐证在原位反应条件下铜为金属态。(图1)
图1. 铅单原子修饰的铜催化剂的示意图和结构表征
        随后研究人员使用流动电解池对催化剂的二氧化碳电还原性能进行评估,发现单原子修饰的铜催化剂在二氧化碳电还原中选择性偏向甲酸,其中以铅单原子修饰的铜催化剂性能最优:甲酸法拉第效率最高可达96%,偏电流密度达800毫安每平方厘米,此外,当甲酸偏电流密度达1安培每平方厘米时,其法拉第效率仍保持在90%以上。
        进一步地,为排除液体产物与电解质溶液分离的成本,研究人员基于固态电解质开发了一种新型电解装置,配合所研制的催化剂,成功实现了纯甲酸水溶液的连续制备,且产物中不含电解质,无需额外分离提纯。研究人员发现,当总电流约300毫安以上时,甲酸的法拉第效率可保持在90%以上,且连续工作180个小时后甲酸的法拉第效率仍保持在85%左右。(图2)借助该技术,以二氧化碳和水为原料,研究人员在实验室实现了浓度0.1摩尔每升纯甲酸水溶液的公升级制备。(图3)
图2. 铅单原子修饰的铜催化剂的二氧化碳电还原性能测试
图3. 借助固态电解质技术合成的8升浓度为0.1摩尔每升的纯甲酸水溶液的照片
        通过原位谱学机理实验和理论模拟,研究人员揭示了铜位点选择性的改变在于金属单原子的引入。通过电化学原位红外和拉曼等谱学手段,研究人员观测到,随着铅单原子的引入,吸附态一氧化碳中间体物种的形成和碳-碳偶联过程的发生均受到抑制,使二氧化碳生成甲酸中间体物种的路径优先进行,从而实现了二氧化碳到甲酸的高选择性。(图4)这一工作为二氧化碳转化生成单一产物的高效铜基电催化剂的设计提供了新思路。
图4. 铅单原子修饰的铜催化剂的二氧化碳电还原机理实验和谱学研究
        该项研究得到了国家重点研发计划、国家科技攻关计划、国家杰出青年科学基金、中科院前沿科学重点研究项目、安徽省联合基金重点项目等项目的支持。
        论文链接:https://www.nature.com/articles/s41565-021-00974-5


        文章来源:中科大
      曾杰,男,1980年9月出生于河南省商城县,中国科学技术大学教授。分别在2002年、2008年于中国科学技术大学获学士、博士学位,师从侯建国院士;2008-2011年于美国圣路易斯华盛顿大学从事博士后研究,师从美籍华人科学家夏幼南教授;2011-2012年于美国圣路易斯华盛顿大学任研究助理教授;2012年至今于中国科学技术大学合肥微尺度物质科学国家研究中心任教授、博士生导师,研究方向为碳一催化。曾杰教授是国家重大科学研究计划青年专项(青年973)首席科学家,入选中科院“百人计划”、科技部“中青年科技创新领军人才”。迄今为止,曾杰教授已在Nature Nanotechnol.、Nature Energy、Nature Commun.等高影响力学术期刊发表了117篇论文,被引8000余次。21篇论文单篇被引过百次,H因子为45。申请美国专利4项,中国专利29项。出版书籍三部,其中以第一译者身份出版的《见微知著——纳米科学》一书荣获“全国优秀科普作品”等奖项。其研究成果被Nature Mater.杂志、Angew. Chem. Int. Ed.杂志、C&EN news、Material Views等国际科学媒体广泛报道,并多次被CCTV、《人民日报》、《人民日报(海外版)》、《光明日报》、《科技日报》等多家国内主流媒体关注和报道。
           夏川,电子科技大学材料与能源学院教授,国家青年人才。研究方向为基于新能源的电催化、电合成、电化学生物合成,致力于实现碳平衡的能量与物质循环。在“液体燃料与基础化学品现场合成”这一特色方向开展了深入、系统的研究,在反应器与催化剂设计领域均取得丰硕成果,共发表学术论文50余篇,授权美国专利3项,H因子34,引用5200余次。近五年来,以第一作者/通讯作者身份在Science、Nat. Energy、Nat. Catal.、Nat. Chem.等国内外高水平期刊共发表论文20余篇,其中ESI高被引论文9篇,热点论文2篇。
           肖建平博士2009-2013年在德国不来梅大学物理和电子工程系攻读博士学位(指导导师:Thomas Frauenheim教授和Thomas Heine教授),主要从事固体氧化物表面稳定性和反应性的理论研究。2013-2015年在中国科学院大连化学物理研究所进行博士后研究工作(合作导师:包信和 研究员/院士),主要研究在限域环境下催化反应中的一般性规律和电子结构根源。2015-2017年在美国斯坦福大学进行博士后研究工作(合作导师:Jens K. Nørskov 教授/院士),主要研究电化学还原二氧化碳得到液体燃料的基本原理和方法。2017年11月回国在浙江西湖高等研究院-理学研究所工作,总共发表学术论文57篇,包括Science, Nature Energy, Nature Communications, PNAS, PRL, JACS, Angew Chem, Chem. Sci.等等。


  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。

本帖被以下淘专辑推荐:

分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖2
回复

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-4-26 10:46 , Processed in 0.091225 second(s), 40 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表