找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 699|回复: 0
打印 上一主题 下一主题

[材料资讯] 李福军课题组:调控过渡金属氧化物正极微环境提升钠离子电池能量密度和循环寿命

[复制链接]

141

主题

178

帖子

239

积分

中级会员

Rank: 3Rank: 3

积分
239
跳转到指定楼层
楼主
发表于 2021-4-20 08:53:20 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
钠离子电池由于生产成本低和安全性高等特点,在大规模储能领域极具竞争力。然而,由于Na+较大的离子半径和迟缓的扩散动力学速率,钠离子电池的能量密度、循环寿命和功率密度受到了极大程度的制约。其中,正极材料的发展是推动钠离子电池能量密度和循环稳定性提升的关键。锰基层状氧化物具备原料价格低廉、制备工艺简单、比容量高等优点,是钠离子电池正极材料的最佳候选者之一。但Na+在层间脱嵌时会造成材料结构的破坏,层结构发生滑移并导致剧烈的相转变,从而限制了钠离子的脱出量和结构的循环稳定性。
       通常,P2-NaxMnO2能够发挥出的比容量约为160 mA g-1,且在充放电过程中MnO2层会发生滑移和畸变,致使结构稳定性差和Na+的脱出/嵌入量受限。目前主要通过在层中引入与过渡金属离子半径相近金属离子稳定材料结构,但仍难实现高储钠容量和稳定性之间的平衡。近日,南开大学李福军研究员团队在P2-NaxMnO2的碱金属层中引入具有大离子半径的K+,不仅可以减小过渡金属层的相对位移,减少充/放电反应过程中的可逆相变(仅P2↔P2’相变),而且使更多的Na+可以参与脱/嵌反应。P2-Na0.612K0.056MnO2在1.8-4.3 V电压范围内展现出240.5 mA g-1的比容量,循环100圈后容量保持率高达98.2%。
       采用高温固相法制备了具有P2结构的Na0.612K0.056MnO2,通过XRD精修、PDF及EXAFS拟合等结构分析证实了K+成功掺入材料的碱金属层中能量较低的Nae位置,掺杂后的材料中钠层间隙增大,M-O键长缩短,有利于Na+的扩散和结构的稳定。
图1 P2-Na0.612K0.056MnO2的晶体结构。a,P2-Na0.612K0.056MnO2的XRD精修结果;b,c,P2-Na0.612K0.056MnO2的晶体结构示意图;d,e,P2-Na0.612K0.056MnO2的PDF及EXAFS拟合结果。
        如图2所示,K+的掺杂使材料储钠容量从167.2 mA g-1提升到240.5 mA g-1,能量密度高达654 Wh kg-1,且在循环100圈后仍保持稳定。此外,P2-Na0.612K0.056MnO2正极材料中Na+具有较快的扩散速率,保证了良好的倍率性能。P2-Na0.612K0.056MnO2与硬碳组装的全电池能量密度可达到314.4 Wh kg-1(基于正、负极活性物质总质量),表现出潜在的商业应用价值。如图3所示,P2-Na0.706MnO2在充放电过程中发生P2-OP4及P2-P'2的相转变过程。K+的掺杂可作为层状结构的支撑,减小了Na+脱出时MnO2层的滑移,从而抑制了P2-OP4相转变,保证了良好的结构稳定性。
图2 材料的电化学性能。a,掺K前后材料的充放电曲线图;b,P2-Na0.612K0.056MnO2的比容量及能量密度与其他正极材料的对比图;c,材料的循环性能图;d,P2-Na0.612K0.056MnO2的Na+扩散系数与Na含量的关系;e,f,硬碳//P2-Na0.612K0.056MnO2全电池电化学性能。
图3 材料在充放电过程中的晶体结构变化过程。a,P2-Na0.612K0.056MnO2的原位XRD谱图;b,P2-Na0.612K0.056MnO2在充放电过程中的结构变化过程示意图;c,P2-Na0.706MnO2在充放电过程中的结构变化过程示意图。
        DFT计算结果表明,P2-Na0.612K0.056MnO2中Na+的空穴形成能降低,约0.9个钠离子可在层间脱/嵌,从而提升了材料的可逆比容量。K+的迁移能垒较Na+高很多,使其在电化学过程中能够固定在层间,减小MnO2层的滑移,从而有效抑制高压区P2-OP4相转变。此外,K+掺杂使Mn-O键增强,缓解了放电过程中的晶格畸变。该工作不仅为钠离子电池提供了一种具有发展潜力的高容量和循环稳定的正极材料,而且对该材料的结构进行了深入的剖析,为高比能钠离子电池正极材料的设计提供了新的思路。在今后的工作中,有望通过表面包覆、梯度设计、电解液优化等方法提升该材料的空气稳定性和长循环寿命,为商业化应用提供可能。
图4 材料的原子和电子结构。a,Mn、K、Na和O的MSD图;b-d,P2-Na0.612K0.056MnO2的电子结构图;e,f,掺K前后材料的pDOS和COHP示意图。
        该研究结果近日以“Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery”为题发表在Nature Communications(https://www.nature.com/articles/s41467-021-22523-3)上。论文的第一作者是南开大学博士生王晨晨,通讯作者是南开大学李福军研究员。这项研究受到国家自然科学基金委国际合作和优秀青年基金资助。


         文章来源:南开大学
       李福军,男,南开大学先进能源材料化学教育部重点实验室研究员、博士生导师。2004年7月,湖北大学本科毕业;2007年7月,南开大学硕士毕业;2011年9月,香港大学博士毕业;2012年1月至2015年3月,东京大学工学系从事博士后研究;2015年3至8月,日本产业技术综合研究所开展锂-空气电池新型机理方面的前沿研究。2015年9月至今,任南开大学先进能源材料化学教育部重点实验特聘研究员、博士生导师。研究内容包括高能化学电源和新能源材料。到目前为止,在先进电极材料、电解质及新型反应机理等方面取得了一系列研究成果,以第一或通讯作者发表SCI论文30余篇,包括NatureCommun.(1篇)、Angew.Chem. Int. Ed.(2篇)、Adv.Mater.(2篇)、EnergyEnviron. Sci.(4篇)、Adv.Energy Mater. (3篇)、Adv.Funct. Mater.(1篇)、NanoLett.(1篇)等,影响因子大于10的论文14篇。其中,6篇文章入选2016 ESI年度1%高被引用论文。单篇最高他引300余次,论文总引用2500余次。

  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。

本帖被以下淘专辑推荐:

分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖1
回复

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-5-9 05:49 , Processed in 0.089970 second(s), 41 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表