找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 1210|回复: 0
打印 上一主题 下一主题

[材料资讯] 单智伟课题组利用热迁移从固态块体材料中制备出单晶金属纳米线

[复制链接]

11

主题

27

帖子

31

积分

新手上路

Rank: 1

积分
31
跳转到指定楼层
楼主
发表于 2019-10-17 09:12:15 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
热迁移是由于温度梯度导致的物质的定向扩散,这在流体中比较显著,但是在固体中该效应通常被认为比较微弱,需要较长时间才能看到较为明显的影响。然而西安交大科研人员最近发现,热迁移可以快速驱动块体金属材料中的原子可控地重构成单晶纳米线结构,该成果刊登在最新一期的《自然·通讯》杂志上。
       受启发于宏观块体单晶的提拉法制备工艺(Czochralski Method),西安交大科研人员提出了一种基于热迁移的纳米线生长方法:在纳米尺度操控一个尖端曲率在100纳米左右的针尖(保持室温)去接触加热金属固体的表面,由于尖端与金属基体接触点间形成的巨大温度梯度,金属基体中的原子可以通过表面的类液层,在热迁移的影响下快速沉积到尖端。如果后撤针尖,原子会不断在纳米线/基体晶界处沉积,从而均匀生长成纳米线结构。研究团队在透射电镜中实现了该过程的原位观测,证实了该方法对于Al、Au、Ag、Cu、Sn等常见金属的纳米线制备均适用,其纳米线的均匀生长速率可达~3 nm/s。并且该方法具有良好的生长可控性,可以通过对尖端的位移控制来调控纳米线的生长形态和直径。
       由于金属纳米线具备优良的物理性能,因此纳米线的可控制备方法一直以来备受关注。传统的纳米线制备方法,例如光刻法、模板法、化学合成法等,通常只能在二维平面内制备纳米线结构,并且很难将合成的纳米线转移到需要的地方。相比于这些方法,利用固体中的热迁移来制备纳米线的方法为构建纳米结构提供了一条新途径:如果对可移动金属尖端加热,就可以用类似于3D打印的方式在冷基板表面构建出任意的三维纳米结构。这一技术有潜力应用到集成电路3D互连线的搭建上。
       西安交通大学青年教师解德刚博士为论文的第一作者,西安交通大学单智伟教授、日本大阪大学尾方成信(Shigenobu Ogata)教授,美国麻省理工学院李巨教授为本论文的共同通讯作者。参与此工作的还有约翰霍普金斯大学马恩教授,西安交通大学博士研究生聂志宇、杨岳清,以及日本大阪大学博士后新里秀平(Shuhei Shinzato)、清华大学博士刘凤仙。该研究得到了国家重点研发计划、国家自然科学基金委、111计划2.0、陕西省博士后科学基金等项目的共同资助。
       微纳尺度材料行为研究中心致力于系统定量地构筑起微纳尺度材料的知识理论体系,为其规模化的工业化应用奠定坚实的理论根基和方法论指导。2010年至今,微纳中心发表署名文章150余篇,包括学术知名期刊《自然》2篇,《科学》2篇,《自然·物质》2篇,《自然·通讯》10篇等,授权专利22项。本研究依托中心团队最新开发的微纳尺度原位力热耦合测试技术,该技术有望在微纳尺度高温力学领域取得一系列突破性成果,为进一步认识微纳尺度材料力学性能奠定基础。
       论文链接https://www.nature.com/articles/s41467-019-12416-x


       纳米线可以被定义为一种具有在横向上被限制在100纳米以下(纵向没有限制)的一维结构。悬置纳米线指纳米线在真空条件下末端被固定。典型的纳米线的纵横比在1000以上,因此它们通常被称为一维材料。根据组成材料的不同,纳米线可分为不同的类型,包括金属纳米线,半导体纳米线和绝缘体纳米线。纳米线均在实验室中生产,截至2014年尚未在自然界中发现。纳米线可以由悬置法、沉积法或者元素合成法制得。悬置纳米线可以通过对粗线的化学刻蚀得来,也可以用高能粒子(原子或分子)轰击粗线产生。实验室中生长的纳米线分为两种,分别为垂直于基底平面的纳米线和平行于基底平面的纳米线。


       单智伟,1996年毕业于吉林大学材料与科学工程专业;1999年在中国科学院金属研究所获硕士学位;2001年赴美就读于美国匹兹堡大学机械工程系并于2005年获博士学位。2005 -2006年在位于美国劳伦兹国家实验室的美国国家电镜中心从事博士后研究工作。2006年加盟世界著名的纳米力学设备制造公司-Hysitron,并先后受聘为资深研究员、真空部门经理和Hysitron公司应用研究中心主任。2008年开始与西安交通大学开展合作,2010年正式加入西安交通大学。教育部“长江学者”特聘教授,国家杰出青年基金获得者,百千万人才工程入选者,亚太材料科学院院士。现任西安交通大学材料科学与工程学院院长。2010年正式全职回国后,先后筹建创立“微纳尺度材料行为研究中心”,“Hysitron中国应用研究中心”及“西安交大-日立研究中心”等三个国际化研究中心和一个省级中心,即“陕西省镁基新材料工程中心”。学术任职包括国务院学位委员会第七届学科评议组(材料科学与工程组)成员,教育部高等学校材料类专业教学指导委员会委员,《中国材料进展》杂志副主编,2018美国材料学会期刊(MRS Bulletin)和《材料科学技术(英文版)》第五届编委会委员,中国电镜学会常务理事及聚焦离子束专业委员会主任,第四届国家新材料产业发展战略咨询委员会战略委员。


       李巨教授,美国麻省理工学院核科学与工程系及材料科学与工程系终身教授,教育部长江学者客座教授,西安交大前沿科学技术研究院微观理论与模拟中心主任,他是计算材料学领域的国际知名学者,致力于材料性质的多尺度计算研究,特别是在材料力学行为的原子模拟等方面获得了多项重要突破。曾获美国青年科技工作者最高奖“青年科学家工程师总统奖”,美国材料学会杰出青年科学家大奖,2014年入选汤森路透全球高被引科学家名单,美国物理学会会士(APS)和美国材料学会(MRS)会士。发表论文260余篇,其中Nature、Science 11篇,SCI引用23000余次,H因子77 (2017年11月数据)。

  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。

本帖被以下淘专辑推荐:

分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖1
回复

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-4-26 18:11 , Processed in 0.088123 second(s), 41 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表