找回密码
 立即注册

QQ登录

只需一步,快速开始

南方科技大学材料科学与工程系郭旭岗

查看数: 1440 | 评论数: 2 | 收藏 0
关灯 | 提示:支持键盘翻页<-左 右->
    组图打开中,请稍候......
发布时间: 2017-3-25 15:10

正文摘要:

郭旭岗,南方科技大学教授。1999年本科毕业于兰州大学化学系。2004年起在美国肯塔基大学化学系攻读研究生,从事半导体高分子材料合成研究,并于2009年获得哲学博士学位。2009-2012年在美国西北大学进行博士后研究工 ...

回复

shirejinmo 发表于 2019-3-22 16:50:21
南方科技大学材料科学与工程系教授郭旭岗教授课题组在Advanced Materials,Advanced Science和Nature Energy等高水平期刊上发表了酰亚胺基有机半导体的最新研究进展及综述。
  《先进材料》(Advanced Materials,影响因子:21.95)以“High-Performance All-Polymer Solar Cells Enabled by an N-Type Polymer Based on a Fluorinated ImideFunctionalized Arene”为题发表了郭旭岗教授团队在高性能、低能损的全聚合物有机太阳能电池方面取得的重要进展(Adv. Mater. DOI: 10.1002/adma.201807220),该工作打破了萘二酰亚胺和苝二酰亚胺基N-型聚合物在全聚合物电池中的垄断地位,为发展高效的全聚合物电池提供了新思路和材料体系。
  全聚合物太阳能电池(All-PSCs)是由P-型聚合物作为电子给体材料和N-型聚合物作为电子受体材料共混制备的新型能源器件。相比较于传统的富勒烯类小分子,聚合物具有更宽更强的吸收和更易修饰的分子结构,从而实现对吸收、能级、结晶性等性质的有效调制。同时,相对于非富勒烯小分子电池,全聚合物电池表现出优异的稳定性和机械性能。因此,发展高效的全聚合物电池具有重要的科学意义和商业价值。然而,全聚合物电池的能量转化效率(PCE)一直落后于其它类型的有机太阳能电池。迄今为止,只有极少数的N-型聚合物可以取得>8%的效率。发展高性能的N-型聚合物取决于优质的缺电子受体的设计和化学合成,而这些受体主要被两个著名的分子萘二酰亚胺(NDI)和苝二酰亚胺(PDI)主导(图1)。它们作为着色剂被广泛地用于印染与染料工业中,近年来对高性能有机半导体的探索,使得NDI和PDI在有机电子领域得到复兴并极大地提升了N-型聚合物的性能。尽管如此,它们的结构特征导致聚合物骨架扭曲,从而限制了载流子传输,减弱了长波区域的吸收,并且难以调控材料的能级使得基于它们的全聚合物电池通常伴随巨大的能量损失。
图 1. (上)NDI和PDI的化学结构以及目前性能最优的N-型聚合物受体;(下)通过稠合与氟化策略协同作用设计新颖的单体f-FBTI2以及相应的N-型聚合物半导体。

  郭旭岗教授一直致力于发展基于酰亚胺的新型高性能有机半导体。2008年制备了首个基于NDI的共轭聚合物,经过十余年发展,NDI聚合物现已经成为最成功的N-型高分子半导体,取得了极其优异的晶体管性能并保持着多项全聚合物电池的效率记录。郭旭岗教授同时深入研究了酰亚胺单体家族的另外一个重要成员:双噻吩酰亚胺(Bithiophene imide, BTI),并构建了一系列基于BTI的聚合物半导体(J. Am. Chem. Soc. 2011,133,1405;J. Am. Chem. Soc. 2012,134, 18427;Adv. Mater. 2012,24, 2242; Nature Photonics 2013,7,825;J. Am. Chem. Soc. 2014,136,16345;J. Am. Chem. Soc. 2015,137,12565)。与NDI和PDI相比,BTI具有更高的化学活性和大幅度减小的位阻,从而提供了一个前所未有的机会对其结构进行拓展优化。在前期工作中,郭旭岗教授团队利用稠环策略成功合成了一系列(半)梯型有机半导体,并在晶体管和全聚合物电池中取得了可比于NDI和PDI聚合物的器件性能(Angew. Chem. Int. Ed. 2017, 56, 9924; Angew. Chem. Int. Ed. 2017, 56, 15304; J. Am. Chem. Soc. 2018,140,6095.)。但是,噻吩相对于苯环更富有电子,在一定程度上减弱了半导体的电子亲和力。因此通过拉电子基团功能化BTI不仅会产生更强的电子受体单体,同时还能解决NDI和PDI结构上的缺陷。基于此,郭旭岗教授团队克服了合成上的挑战,成功制备出新颖的氟取代的酰亚胺及其聚合物半导体。理论计算表明,相对于没有氟的单体f-BTI2,氟取代的单体f-FBTI2表现出更低的能级,有助于提升聚合物的N-型性能。
  相比于f-BTI2-T和之前报道的s-BTI2-FT和f-BTI2-FT的全聚合物电池,以f-FBTI2-F为电子受体材料的电池实现了性能的巨大提升,能量转化效率达到8.1%(图2),同时实现了高达1.05V的开路电压值和低至0.53eV的能量损失。与NDI和PDI有着不同的结构和电子特性的新型受体单体f-FBTI2的出现将衍生出更多高性能N-型聚合物,为发展高效的全聚合物电池提供了全新的材料体系。
  郭旭岗教授课题组博士后孙会靓和研究助理汤育民为该工作的共同第一作者,已毕业本科生凌少华(现为新加坡国立大学机械系在读博士生)参与了部分合成工作,通讯作者为郭旭岗教授

  除了在全聚合物电池方面的突破,《先进科学》(Advanced Science, 影响因子:12.441)以“Phthalimide-Based High Mobility Polymer Semiconductors for Efficient Nonfullerene Solar Cells with Power Conversion Efficiencies over 13%”为题,发表了郭旭岗教授团队在高性能P-型有机半导体材料方面的重要进展,及该材料在高迁移率有机场效应晶体管和高效率、低能损非富勒太阳能电池中的应用 (Adv. Sci. 2019, 6, 1801743)的研究。该工作突破了基于苯并双噻吩(benzodithiophene) 的P-型聚合物半导体材料在非富勒烯太阳能电池中的垄断地位,为发展高性能的P-型聚合物提供了新的构建单元和材料体系。《先进科学》以封底文章对该工作重点推荐。
  郭旭岗课题组硕士生陈鹏和已毕业访问学生虞坚炜(现为瑞典林雪平大学在读博士生)为该工作的共同第一作者,本科生周鑫提供理论计算支持,郭旭岗教授为通讯作者。
  由于过去十年来在酰亚胺基有机半导体材料体系的创新和系统性工作,继2014年的综述文章(Chem. Rev. 2014, 114, 8943.)发表后,近期,郭旭岗教授团队应《自然能源》(Nature Energy 2018, 3, 720;影响因子:46.859)和《欧洲化学》(Chem. Eur. J. 2019, 24, 87)邀请,撰写酰亚胺基有机半导体材料及其光电器件的综述。
  论文链接:   

xiudou 发表于 2018-4-30 09:44:37
材料科学与工程系郭旭岗教授课题组在《美国化学会志》(JACS, 影响因子13.858)发表封面文章。论文题目为“(Semi)ladder-Type Bithiophene Imide-Based All-Acceptor Semiconductors: Synthesis, Structure–Property Correlations, and Unipolar n-Type Transistor Performance”。该论文在n-型有机半导体材料方向取得新的突破,展示了酰亚胺基有机半导体材料在高性能单极性n-型有机薄膜晶体管器件中的应用。

n-型有机半导体论文封面
       有机电子器件性能的提升依赖于高性能有机半导体的研发,过去十年,有机p-型半导体材料得到快速发展,器件性能取得大幅度提升,但有机n-型半导体发展严重滞后,材料种类和器件性能远低于p-型材料。n-型有机半导体材料的性能提升依赖于新颖缺电子构建单元的发展。酰亚胺是高性能n-型有机半导体最为重要的构建单元,郭旭岗教授一直从事酰亚胺基有机半导体及其电子器件的研究(Chem. Rev. 2014, 114, 8943)。在所研究的酰亚胺单体中,其中双噻吩酰亚胺(bithiophene imide,BTI)是一种极为重要的缺电子构建单元,在前期工作中,郭旭岗课题组对双噻吩酰亚胺进行拓展,合成了一系列具有可调控共轭长度的梯形双噻吩酰亚胺小分子(Angew. Chem. Int. Ed.,2017,56,9924);利用双噻吩酰亚胺并环设计构建n-型聚合物受体材料,实现具有高能量转换效率的全聚物太阳能电池(Angew. Chem. Int. Ed., 2017,56,15304);并成功合成了新型噻唑酰亚胺缺电子受体单元, 基于其全受体类型均聚物的有机薄膜晶体管表现出优异的单极性n-型性能,在晶体管关电流和开关比性能上显著优于常见给体-受体类型共聚物材料,同时达到较高的电子迁移率(Adv. Mater.,2018,30, 201705745,back cover)。

全受体类型均聚物PBTIn化学结构和晶体管迁移率趋势
       在该论文中,郭旭岗教授课题组在梯形双噻吩酰亚胺小分子的基础上,设计并成功合成了一系列具有半梯形结构的全受体类型均聚物PBTIn(n = 1-5),并深入研究了这些材料的构性关系。实验表明,均聚物的聚合方法选择至关重要,通过Stille和Yamamoto偶联方法对比发现,Stille聚合能够得到高分子量、低缺陷态、高性能的高分子半导体;采用全受体结构能够有效拉低前沿轨道能级,基于这些均聚物材料的有机薄膜晶体管都表现出良好的单极性n-型性能,晶体管器件的关电流仅为10−9-10−10A,电流开关比高达106;晶体管迁移率性能与构建单元长度反向关联,PBTI1的最高电子迁移率为3.71 cm2 V-1 s-1,该迁移率是全受体均聚物材料中的最高纪录,比PBTI5的电子迁移率高出两个数量级。

半导体薄膜的二维掠入式X射线衍射图
       通过深入表征发现,这一系列全受体类型均聚物表现出来的晶体管迁移率趋势与其半导体薄膜结构有序度直接相关。拉曼光谱表明,梯形构建单元共轭长度的增加带来较大的单体间扭转角,影响聚合物骨架的平面性。同步辐射X射线衍射表明,梯形构建单元的增长使得聚合物薄膜中π-π堆积方向的结晶性降低,不利于电子的分子间传输。这些结果表示,较长的单体结构会对聚合物薄膜形貌和载流子传输造成负面影响,因此发展更长的梯形构建单元对全受体类型均聚物迁移率的提升不会带来帮助。该研究表明全受体结构是实现高性能单极性n-型聚合物材料的有效途径,同时为n-型梯形小分子和聚合物的结构设计和发展提供重要参考依据。
       郭旭岗课题组研究学者王英锋和研究助理教授郭晗博士为论文的共同第一作者,本科生凌少华参与部分材料合成工作,韩国高丽大学Han Young Woo教授实验室对材料进行同步辐射表征,西班牙马拉加大学Rocio Ponce Ortiz博士进行了材料计算和拉曼光谱性质研究。该项研究得到了国家自然科学基金、深圳市孔雀团队、深圳市重点实验室、校长基金等项目支持。

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-5-8 01:18 , Processed in 0.127762 second(s), 37 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表