找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 1046|回复: 2
打印 上一主题 下一主题

[材料资讯] 东华大学张国军

[复制链接]

179

主题

237

帖子

382

积分

中级会员

Rank: 3Rank: 3

积分
382
跳转到指定楼层
楼主
发表于 2021-4-26 10:12:13 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
张国军,男,1964年7月生。工学博士,东华大学功能材料研究所研究员、博导。1987年至1996年在中国建筑材料科学研究院从事特种陶瓷的研究与开发工作,并于1995年获中国建筑材料科学研究院博士学位。1996年至2005年在日本产业技术综合研究所(AIST九州中心和中部中心)从事先进陶瓷的研究与开发工作。2005年获中科院“百人计划”资助回中国科学院上海硅酸盐研究所工作,2016年起调入东华大学。中科院百人计划、上海市浦江人才计划获得者。担任Advances in Applied Ceramics、Journal of the Asian Ceramic Societies、Journal of Advanced Ceramics、Journal of Ceramic Society of Japan、China’s Refractories编委会委员,中国硅酸盐学会特陶分会理事等。


联系电话:021-67874093                                                                                    
Email:gjzhang@dhu.edu.cn  


主要研究方向:
1. 微纳结构可控的先进陶瓷材料的制备科学;
2. 新型功能化结构陶瓷的性能发现与创制工艺;
3. 极端环境(超高温、强辐照、强腐蚀)下陶瓷材料的结构与性能演变;
4. 环境功能材料的设计、制备与性能评价。


主要研究成果:
长期从事硼化物、氮化物、碳化物等非氧化物陶瓷的制备科学、微结构调控与性能表征研究,取得一系列研究成果,至今已发表SCI论文200余篇,其中在本领域权威期刊Journal of the American Ceramic Society上发表50余篇,Journal of the European Ceramic Society上发表20余篇,他人引用2000余次,申请专利20余项。深入研究了非氧化物陶瓷体系的相平衡关系、致密化和微结构调控以及强韧化机理,首次成功实现超高温陶瓷的织构化,实现1600oC高温强度无衰减,实现复相陶瓷体系里的残余应力调控和材料可靠性提升;发展了陶瓷材料的原位反应合成工艺,探索出多个有实用价值的原位反应体系,成功实现复相陶瓷的微结构与性能调控。目前重点研究新型功能化结构陶瓷的性能发现与创制工艺、锆化合物陶瓷的组分与微纳结构设计以及相关制备科学,为先进结构陶瓷的功能化以及在超高温、强辐照和强腐蚀等极端环境下的性能提升、演变机理、材料选择和应用研究提供理论与实验支持。


荣誉及获奖情况:
1995年,陶瓷材料强度学及评价技术,国家科学技术进步二等奖。
1996年,中国硅酸盐学会第2届青年科技奖。
1997年,复相结构陶瓷颗粒尺寸效应,建材行业部级科学技术进步二等奖。
2009年,中科院百人计划结题“优秀”。


近年主持与承担的项目:
近年来负责完成了中国科学院百人计划“硼化物基陶瓷的制备科学与性能表征”(2005-2009)、国家自然科学基金委重点项目“超高温陶瓷相图、材料制备与微结构控制的研究”(2007-2010)、其他面上项目及国际合作项目,以及中科院及上海市科委的国际合作项目等多项课题。目前主要负责承担国家自然科学基金委重点项目“核能用锆化合物陶瓷的协同设计、制备科学与相关机理研究”、面上项目“ZrB2-SiC陶瓷的高温强度、固溶行为、晶界结构及其相关性研究”、以及NSFC-JSPS合作项目“高强Zr(Hf)B2基超高温陶瓷和MAX相材料的设计与先进制备工艺研究”等。


近年代表性论文:
1.Hu-Lin Liu, Guo-Jun Zhang, Ji-Xuan Liu, Hou-Zheng Wu, “Synergetic roles of ZrC and SiC in ternary ZrB2-SiC-ZrC ceramics”, Journal of the European Ceramic Society, 35: 4389-4397 (2015).
2.Hu-Lin Liu, Ji-Xuan Liu, Hai-Tao Liu, Guo-Jun Zhang, “Contour maps of mechanical properties in ternary ZrB2-SiC-ZrC ceramic system”, ScriptaMaterialia, 107: 140-144 (2015).
3.Hai-Bin Ma, Zhen-Yong Man, Ji-Xuan Liu, Fang-Fang Xu, Guo-Jun Zhang, “Microstructures, solid solution formation and high-temperature mechanical properties of ZrB2 ceramics doped with 5 vol.% WC”, Materials and Design, 81: 133-140 (2015).
4.Ji-Xuan Liu, Guo-Jun Zhang, Fang-Fang Xu, Wen-Wen Wu, Hai-Tao Liu, Yoshio Sakka, Toshiyuki Nishimura, Tohru S. Suzuki, De-Wei Ni, Ji Zou, “Densification, microstructure evolution and mechanical properties of WC doped HfB2-SiC ceramics”, Journal of the European Ceramic Society, 35: 2707-2714 (2015).
5.Fei Li, Meng-Shi Liang, Xi-Fei Ma, Xiao Huang, Guo-Jun Zhang, “Preparation and characterization of stoichiometric zirconium carbide foams by direct foaming of zirconia sols”,Journal of Porous Materials, 22: 493-500 (2015).
6.Xin-Gang Wang, Guo-Jun Zhang, Jian Zhao, Jia-Xiang Xue, Chang-ming Xu, and Pei-ling Wang, “High-strength ZrC ceramics doped with Aluminum”, Journal of the American Ceramic Society, 97 (11): 3367-3370 (2014).
7.Yun Tang, Jia-Xiang Xue, Guo-Jun Zhang, Xin-Gang Wang and Chang-Ming Xu, “Microstructural differences and formation mechanisms of spark plasma sintered ceramics with or without boron nitride wrapping”, ScriptaMaterialia,75: 98-101 (2014).
8.Jia-Xiang Xue, Guo-Jun Zhang, Li-Ping Guo, Hai-Bin Zhang, Xin-Gang Wang, Ji Zou, Shu-Ming Peng, Xing-Gui Long, “Improved radiation damage tolerance of titanium nitride ceramics by introduction of vacancy defects”, Journal of the European Ceramic Society,34: 633-639 (2014).
9.Liu J. X., Huang X., Zhang G. J., “Pressureless sintering of hafnium carbide-silicon carbide ceramics”, J. Am. Ceram. Soc., 96 (6): 1751-1756 (2013).
10.Sun S. K., Zhang G. J., Liu J. X., Zou J., Ni D. W., “Reaction sintering of HfC/W cermets with high strength and toughness”, J. Am. Ceram. Soc., 96 (3): 867-872 (2013).
11.Sun S. K., Zhang G. J., Wu W. W., Liu J. X., Suzuki T., Sakka Y., “Reactive spark sintering of ZrC and HfC ceramics with fine microstructures”, Scripta Mater., 69: 139-142 (2013).
12.Xie B. H., Huang X., Zhang G. J.,” High thermal conductive polyvinyl alcohol composites with hexagonal boron nitride microplatelets as fillers”, Composites Sci. Tech., 85: 98-103 (2013).
13.Xue J. X., Zhang G. J., Xu F. F., Zhang H. B., Wang X. G., Peng S. M., Long X. G., “Lattice expansion and microstructure evaluation of Ar ion-irradiated titanium nitride”, Nuclear Instruments and Methods in Physics Research B, 308: 62-67 (2013).
14.Wang X. G., Zhang G. J., Xue J. X., Tang Y., Huang X., Xu C. M., Wang P. L., “Reactive Hot Pressing of ZrC-SiC Ceramics at Low Temperature”, J. Am. Ceram. Soc., 96 (1): 32-36 (2013).
15.Tang Y., Zhang G. J., Xue J. X., Wang X. G., Xu C. M., Huang X., “Densification and mechanical properties of hot-pressed ZrN ceramics doped with Zr or Ti”, J. Eur. Ceram. Soc., 33 (7): 1363-1371 (2013).
16.Hui-Yu Qiu, Wei-Ming Guo, Ji Zou and Guo-Jun Zhang, “ZrB2 powders prepared by boro/carbothermal reduction of ZrO2: the effects of carbon source and reaction atmosphere”, Powder Technology, 217: 462-466 (2012).
17.Zou J., Zhang G. J., Hu C. F., Nishimura T., Sakka Y., Vleugels J., Biest O., Strong ZrB2-SiC-WC Ceramics at 1600 degrees C, J. Am. Ceram. Soc., 95 (3): 874-878 (2012).
18.Wang X. G., Liu J. X., Kan Y. M., Zhang G. J., Effect of solid solution formation on densification of hot-pressed ZrC ceramics with MC (M = V, Nb, and Ta) additions, J. Eur. Ceram. Soc., 32 (8): 1795-1802 (2012).
19.Liu H. T., Zou J., Ni D. W., Liu J. X., Zhang G. J., Anisotropy oxidation of textured ZrB2-MoSi2 ceramics, J. Eur. Ceram. Soc., 32 (12): 3469-3476 (2012).
20.De-Wei Ni, Guo-Jun Zhang, Yan-Mei Kan and Yoshio Sakka,“Textured h-BN Ceramics Prepared by Slip Casting”, J. Am. Ceram. Soc., 94(5): 1397-1404 (2011).
21.Ji Zou, Shi-Kuan Sun, Guo-Jun Zhang, Yan-Mei Kan, Pei-Ling Wang and TatsukiOhji,“Chemical Reactions, Anisotropic Grain Growth and Sintering Mechanisms of Self-Reinforced ZrB2–SiC Doped with WC”, J. Am. Ceram. Soc., 94(5): 1575-1583 (2011).
22.Wei-Ming Guo, Zhen-Guo Yang andGuo-Jun Zhang, “New Borothermal Reduction Route to Synthesize Submicrometric ZrB2 Powders with Low Oxygen Content”, J. Am. Ceram. Soc., 94(11): 3702-3705 (2011).
23.Ji Zou, Guo-Jun Zhang, Shi-Kuan Sun, Hai-Tao Liu, Yan-Mei Kan, Ji-Xuan Liu and Chang-Ming Xu,“ZrO2 removing reactions of Groups IV–VI transition metal carbides in ZrB2 based composites”, J. Eur. Ceram. Soc., 31(3): 421-427 (2011).
24.Xin-Gang Wang,Wei-Ming Guo,Yan-Mei Kan,Guo-Jun Zhang and Pei-Ling Wang,“Densification behavior and properties of hot-pressed ZrC ceramics with Zr and graphite additives”, J. Eur. Ceram. Soc., 31(6): 1103-1111 (2011).
25.Hai-Tao Liu, Ji Zou, De-Wei Ni, Wen-Wen Wu, and Guo-Jun Zhang, “Textured and platelet-reinforced ZrB2-based ultra-high-temperature ceramics”, Scripta Materialia, 65(1): 37- 40 (2011).
26.Bo Yuan and Guo-Jun Zhang, “Microstructure and shear strength of self-joined ZrB2 and ZrB2-SiC with pure Ni”, Scripta Materialia, 64: 17-20 (2011).
27.Jia-Xiang Xue, Ji-Xuan Liu, Bin-HuanXie and Guo-Jun Zhang, “Pressure-induced preferential grain growth, texture development and anisotropic properties of hot pressed hexagonal boron nitride ceramics”, Scripta Materialia, 65: 966-969 (2011).
28.Ji-Xuan Liu, Yan-Mei Kan and Guo-Jun Zhang, “Pressureless sintering of tantalum carbide ceramics without additives”, J. Am. Ceram. Soc., 93: 370-373 (2010).
29.Ji-Xuan Liu, Yan-Mei Kan and Guo-Jun Zhang, “Synthesis of ultra-fine hafnium carbide powder and its pressureless sintering”,J. Am. Ceram. Soc., 93: 980-986 (2010).
30Ji Zou, Guo-Jun Zhang and Yan-Mei Kan, “Pressureless densification and mechanical properties of hafnium diboride doped with B4C: From solid state sintering to liquid phase sintering”,J. Eur. Ceram. Soc.,30: 2699-2705 (2010).
31.Ji-Xuan Liu, Bo-Yuan, Yan-Mei Kan, Guo-Jun Zhang and Pei-Ling Wang, “Properties of porous Si3N4/BN composites fabricated by RBSN technique”, Int. J. Appl. Ceram. Technol., 7: 536-545 (2010).


近年主要邀请报告:
1. Reactive Processes for Diboride-based Ultra High Temperature Ceramics, The 11th Pacific Rim Conference on Ceramic Societies (PacRim 11), Jeju, Korea, 2015.8.
2. Recent Advances on Reactive Synthesis of Non-Oxide Ceramics, 4th International Symposium on SiAlONs and Non-Oxides (ISSNOX 4), Nagahama, Japan, 2014.5.
3. High Performance HfB2-SiC Ceramics Doped with WC: Densification Mechanism, Microstructure Evolution and Mechanical Properties, The 10th Pac Rim Conference on Ceramic and Glass Technology (PacRim 10), San Diego, USA, 2013.6.
4. Zirconium-Based Non-Oxide Ceramics: Preparation, Microstructure Tailoring and Properties (Keynote), 13th International Conference of the European Ceramic Society, Limoges, France, 2013.6.
5. Non-Oxides of Zirconium: Recent Progress on the Preparation, Microstructure Tailoring and Properties, 8th International Conference on High Temperature Ceramics Matrix Composites (HTCMC-8), Xi'an, China, 2013.9.
6. High-Temperature Bending Strength of ZrB2-20vol%SiC Ceramics, 36th International Conference and Exposition on Advanced Ceramics and Composites, Daytona Beach, USA, 2012.1.
7. Texturing Technologies for Group IVB Metal Diboride Ceramics, 36th International Conference and Exposition on Advanced Ceramics and Composites, Daytona Beach, USA, 2012.1.
8. Oxidation Behavior and Microstructure Stability of ZrB2-SiC and ZrB2-MoSi2 Ultra High Temperature Ceramics, International Symposium on New Frontier of Advanced Si-Based Ceramics and Composites (ISASC2012), Soul, Korea, 2012.3.
9. Textured Diboride Based UHTCs with Anisotropic Properties, Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications II, Hernstein, Germany, 2012.5.
10. Strong Diboride-Based Ultra-high Temperature Ceramics at 1600C, International Conference on the Science and Technology for Advanced Ceramics (STAC-6), Yokohama, Japan, 2012.6.
11. Advanced Zirconium-based Non-oxide Ceramics: Preparation, Microstructure Tailoring and Properties, 3rd International Symposium on Advanced Ceramics and Technology for Sustainable Energy Applications (ACTSEA 3), Taiwan, 2011.10.
12. Group IVB Metal Diboride Ceramic Composites: Improvement of Material Properties through Microstructure Tailoring, 17th International Symposium on Boron, Borides and Related Materials (ISBB2011), Istanbul, Turky, 2011.9.
13. Non-Oxide Ceramics for Extreme Environment Applications, The 9th International Meeting of Pacific Rim Ceramic Societies (PacRim 9), Cairns, Australia, 2011.7.
14. Material Properties Improvement in Ultra High Temperature Ceramics via Microstructure Tailoring, CIMTEC 2010, Monticatini, Italy, 2010. 6.
15. High Temperature Stability of ZrB2 Based Ultra High Temperature Ceramics, The 3rd International Congress on Ceramics (ICC3), Osaka Japan, 2010. 11.
16. Processing and Microstructure Tailoring of Ultra High Temperature Ceramics, the 3rd International Symposium on SiAlONs and Non-Oxides (ISSNOX 3), Cappadocia, Turkey, 2010.6.
17. High Temperature Stabilized Silicon Nitride by Hexagonal Boron Nitride Nanocoating, International Symposium on Advanced Ceramics and Technology for Sustainable Energy Applications (ACTSEA-2), Grand Hotel, Taipei, Taiwan, 2009.11.
18. Densification and Properties of ZrB2-SiC Ultra-High Temperature Ceramics with Carbide Addition, 2nd International Congress on Ceramics (ICC2), Verona, Italy, 2008.6.
19. Ultra-High Temperature Ceramics (UHTCs) Based on ZrB2 and HfB2 Systems, 16th International Symposium on Boron, Borides and Related Materials (ISBB2008), Matsue, Shimane, Japan, 2008.9.
20. Reactive Processing of Boride Ceramic Composites, 2nd Int. Symposium on Sialons and Non-Oxides (ISSNOX-2), Mie, Japan, 2007.12
21. Ultra-High Temperature Ceramics (UHTCs) Based on ZrB2-SiC System, 7th Pacific Rim Conference on Ceramic and Glass Technology, Shanghai, China, 2007.11


国际交流与合作:
与日本物质材料研究机构、意大利陶瓷科学技术研究所、比利时鲁汶大学等建立了良好的合作研究关系,每年派遣青年教师、研究生赴国外研究机构开展合作研究,同时也为研究生毕业后顺利联系国外博士后创造条件。每年与国外同行科学家共同组织研讨会,为合作项目的顺利开展提供有效的学术交流平台,为研究生参与国际学术交流创造更多机会。


课题组主要仪器设备:
1. 材料制备设备:放电等离子烧结设备(Spark Plasma Sintering,德国FCT)、热压烧结炉、无压烧结炉、以及其他常规工艺设备。
2. 分析测试仪器设备:扫描电镜(配备能谱仪)、力学性能测试系统(弯曲强度、硬度、弹性模量)、激光热导仪、差热/热重分析仪等。
欢迎具有材料、物理、化学等专业背景的同学加入我们的研究团队!






  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖
回复

使用道具 举报

179

主题

237

帖子

382

积分

中级会员

Rank: 3Rank: 3

积分
382
沙发
 楼主| 发表于 2021-4-26 10:13:52 | 只看该作者
高放射性核素的存储和后处置对于安全、持续的核能利用至关重要。国际公认的安全方法是将高放射性核素封装在固化基质中,再进行深地质处置,可以有效防止高放射性核素进入生物圈。因此,核废料固化体必须具有良好的耐辐射性和优异的耐水性。以烧绿石结构(A2B2O7)氧化物为代表的复杂结构陶瓷体系,其A、B位两种晶格点位可以被镧系元素、过渡金属元素、锕系元素和次锕系元素占据,具有容纳不同核素的能力,显示良好的核素固化广谱性,是研究较为广泛的一类陶瓷固化体。然而,突破元素置换型固溶对核素固化量的限制,以及进一步提升固化体的长期稳定性,依然是一个长期追求的目标。
       2015年Rost等人首次报道了高熵氧化物陶瓷后,研究人员相继开发了一系列其他高熵氧化物陶瓷和高熵非氧化物陶瓷。高熵陶瓷组分多变,可设计性强,内部存在晶格畸变,有望展现出高熵合金中存在的四大高熵效应,即热力学上的高熵效应,带来物相的高温稳定性;晶体学上的晶格畸变效应,造成晶格应力,提高物质迁移能垒;动力学上的迟滞扩散效应,提升与原子扩散相关的材料性能;以及性能上的鸡尾酒效应,可望赋予材料显著优于单组分的性能。就高放核废料高熵陶瓷固化体来说,高熵效应有望使核素固化容量更高,而晶格畸变效应和迟滞扩散效应则有望降低离子的扩散速率。可以看出,高熵陶瓷的性能特性与固化高放核废料对固化体性能的要求高度一致,从而为高熵陶瓷的实际应用提供了新的思路和机遇。
       基于以上分析,近期,我校纤维材料改性国家重点实验室、功能材料研究中心张国军教授团队在国家自然科学基金重点项目“核能用锆化合物陶瓷的协同设计、制备科学与相关机理研究”(51532009)资助下,首次设计并制备了一系列结构稳定、抗浸出性能优异的高熵陶瓷固化体(Eu1-xGdx)2 (Ti0.2Zr0.2Hf0.2Nb0.2Ce0.2)2O7 (x=0,0.5和1.0),并以“高熵A2B2O7型氧化物陶瓷:一种高放核废料的潜在固化体”(High-entropy A2B2O7-type oxide ceramics: A potential immobilising matrix for high-level radioactive waste)为题发表于《危险材料杂志》(Journal of Hazardous Materials)。论文第一作者为我校2018级博士研究生周林。
       基于模拟核素和锕系元素的离子半径相近原则,本工作进行了精心的元素设计,通过固相法制备了高固溶量、低浸出率的高熵陶瓷固化体。其中,Gd3+和Eu3+可模拟三价次锕系元素(Cm3+和/或Am3+),Ce被用作Pu的模拟核素,Gd和Hf是中子吸收剂,可以防止临界现象的发生,降低固化体在深地质处置过程中的风险。
       静态水浸试验结果表明,高熵陶瓷中的模拟放射性核素Ce和Gd的浸出率约为10−8~10−6 g·m−2·d−1,远低于Gd2Zr2O7中的浸出率(10−6~10−3 g·m−2·d−1)。通过对固化体高温电阻率的测量,发现高熵化后材料的电阻率显著提高,氧离子空位浓度显著降低。基于以上实验结果,作者认为,高熵固化体优异的抗浸出性能得益于高熵材料中的晶格畸变,增加了晶格势能,较低的氧离子空位浓度阻碍了阳离子的迁移路径,从而使阳离子的迁移速率显著降低。该工作通过阳离子在晶体结构中的扩散机理分析,揭示了高熵陶瓷固化体中核素的浸出机制,研究结果对高熵陶瓷高放核素固化体的开发与应用具有重要的借鉴和指导意义。
       近年来,张国军教授团队聚焦高熵陶瓷的组分设计-制备科学-微观结构-材料性能内在关系研究,在高熵碳化物陶瓷、高熵硼化物陶瓷、高熵硅化物陶瓷以及高熵稀土锆酸盐热障涂层等方向取得了一系列研究进展,并于2020年获得了国家自然科学基金重点项目的资助(52032001)。
论文链接:High-entropy A2B2O7-type oxide ceramics: A potential immobilising matrix for high-level radioactive waste, Journal of Hazardous Materials, 2021, 415: 125596. https://doi.org/10.1016/j.jhazmat.2021.125596

回复 支持 反对

使用道具 举报

113

主题

125

帖子

153

积分

注册会员

Rank: 2

积分
153
板凳
发表于 2021-11-16 11:23:28 | 只看该作者
近日,在第19次世界陶瓷科学院(World Academy of Ceramics)院士选举中,经过严格的提名和独立评选程序,东华大学功能材料研究中心张国军研究员当选为世界陶瓷科学院院士(Academician of World Academy of Ceramics)。
       张国军研究员是国际上硼化物陶瓷制备科学和性能研究以及非氧化物陶瓷反应烧结领域的专家,致力于非氧化物陶瓷体系的相平衡关系、致密化和微结构调控以及强韧化机理研究。他率领团队成功开发了多体系、多规格高纯超高温陶瓷粉体,基于超高温陶瓷组分和微结构设计实现高温力学性能大幅度提升;创新发展了陶瓷材料的原位反应合成工艺,探索出多个有实用价值的原位反应体系,成功实现了复相陶瓷的微结构与性能调控。张国军研究员团队目前聚焦高熵陶瓷的设计与性能研究、新型功能化结构陶瓷的性能发现与创制工艺,为先进结构陶瓷的功能化及其在超高温、强辐照和强腐蚀等极端环境下的性能提升与演变机理、材料选择与应用研究提供理论与实验支持。
       世界陶瓷科学院成立于1987年,致力于推进世界陶瓷科学的发展及跨学科交融。世界陶瓷科学院院士当选人均为国际陶瓷科学领域有突出贡献和成就的个人,是陶瓷科学领域的最高荣誉。自成立以来,世界陶瓷科学院院士的总人数保持在200人以内。

回复 支持 反对

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-5-6 05:25 , Processed in 0.092002 second(s), 37 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表