找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 1755|回复: 4
打印 上一主题 下一主题

[专家学者] 武汉大学材料系肖湘衡

[复制链接]

65

主题

69

帖子

91

积分

注册会员

Rank: 2

积分
91
跳转到指定楼层
楼主
发表于 2017-3-22 11:47:42 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
肖湘衡武汉大学物理科学与技术学院教授,博士生导师。研究方向:离子注入法制备金属和半导体纳米材料与改性研究; 新纳米结构的表面等离激元共振;纳米颗粒等。
姓名: 肖湘衡 (Xiangheng Xiao)
职务/职称:教授,博士生导师(教育部新世纪优秀人才,珞珈青年学者)
地址: 武汉大学物理科学与技术学院2-212
电话: Tel: 027-68752481-2212
E-mail: xxh@whu.edu.cn
主要学习及工作经历:

2001.6年毕业于武汉大学,获工学学士学位
2008.6年毕业于武汉大学,获工学博士学位
2008.7月-至今 武汉大学物理科学与技术学院任教   
2013.11-2014.11 美国加州大学洛杉矶分校(University of California, Los Angeles)访问学者
Scientific Reports (Editorial Board)

主要研究方向:
1. 低维纳米材料合成及其在光解水制氢研究;
2. 新纳米结构的表面等离激元共振;
3. 离子注入法制备金属和半导体纳米材料与改性研究;
4. 离子束精确掺杂低维纳米器件及原位性能研究;
5. 抗辐照材料。

科研项目:
主持国家自然科学基金(三项),教育部博士点基金,湖北省自然科学基金,江苏省自然科学基金,武汉市晨光计划,武汉市应用基础研究计划等
期刊封面文章:
nanotech.jpg
近年论文如下(*表示通讯作者):
2017
1.      X. L. Zhao, S. Liu, J. B. Niu, L. Liao, Q. Liu*, X. H. Xiao*, H. B. Lv, S. B. Long, W. Banerjee, W. Q. Li, S. Y. Si, M. Liu*, Confining Cation Injection to Enhance CBRAM Performance by Nanopore Graphene Layer, Small (DOI: 10.1002/smll.201603948);
2.      X. L. Zhang, X. H. Xiao*, Z. G. Dai*, W. Wu, X. G. Zhang, L. Fu, C. Z. Jiang, Ultrasensitive SERS Performance in 3D “Sunflower-like” Nanoarrays decorated with Ag Nanoparticles, Nanoscale 9 (2017) 3114-3120;
3.      X. G. Zhang, Z. G. Dai, S. Y. Si, X. L. Zhang, W. Wu, H. B. Deng*, F. B. Wang*, X. H. Xiao*, C. Z. Jiang, Ultrasensitive SERS substrate integrated with uniform subnanometer scale "hot spots" created by a graphene spacer for the detection of mercury ions, Small (DOI: 10.1002/smll.201603347); (被选为封面故事)
4.      S. Y. Si, W. Q. Li, X. L. Zhao, M. Han, Y. N. Yue, W. Wu, S. S. Guo, X. G. Zhang, Z. G. Dai, X. W. Wang*, X. H. Xiao*, C. Z. Jiang, Significant radiation tolerance and moderate reduction in thermal transport of tungsten nanofilm by inserting monolayer graphene, Advanced Materials 29 (2017) 1604623;

5.      J. X. Xu, Z. H. Wang, W. Q. Li, X. G. Zhang, D. He, X. H. Xiao*, Ag nanoparticles located on three-dimensional pine tree-like hierarchical TiO2 nanotube array films as high-efficiency plasmonic photocatalysts, Nanoscale Research Letters 12 (2017) 54;
2016
1.      Y. Yu, W. Q. Li, P. C. Wu, C. Z. Jiang , X. H. Xiao*, Gate Dielectric Ion Implantation to Modulate the Threshold Voltage of In2O3 Nanowire Field Effect Transistors, Applied Physics Letters 109 (2016) 193505;
2.      X. L. Zhang, Z. G. Dai, X. G. Zhang, S. L. Dong, W. Wu, S. K. Yang*, X. H. Xiao*, C. Z. Jiang, Recent progress in the fabrication of SERS substrates based on the arrays of polystyrene nanospheres, SCIENCE CHINA Physics, Mechanics & Astronomy 59 (2016) 126801;(Invited Review)
3.      J. L. Wang, Q. Yao, C. W. Huang, X. M. Zou, L. Liao*, S. S. Chen, Z. Y. Fan, K. Zhang, W. Wu, X. H. Xiao, C. Z. Jiang, W. W. Wu, High Mobility MoS2 Transistors with Low Schottky Barrier Contact by using Atomic Thick h-BN as a Tunneling Layer,  Advanced Materials (DOI: 10.1002/adma.201602757);
4.      Z. Y. Yang, X. Q. Liu, X. M. Zou, J. L. Wang, C. Ma, C. Z. Jiang, J. C. Ho, C. F. Pan, X. H. Xiao*, J. Xiong*, and L. Liao*, Performance Limits of the Self-Aligned Nanowire Top-Gated MoS2 Transistors, Advanced Functional Materials (DOI: 10.1002/adfm.201602250);
5.      J. Liu, Z. H. Wu, Q. Y. Tian, W. Wu,* and X. H. Xiao*, Shape-Controlled Iron Oxide Nanocrystals: Synthesis, Magnetic Properties and Energy Conversion Applications, CrystEngComm 18 (2016) 6303-6326;
6.      J. Liu, W. Wu*, Q. Y. Tian, Z. G. Dai, Z. H. Wu, X. H. Xiao*, C. Z. Jiang*, Anchoring of Ag6Si2O7 Nanoparticles on α-Fe2O3 Short Nanotubes as Z-Scheme Photocatalyst for Improving Their Photocatalytic Performances, Dalton Transactions 45 (2016) 12745-12755;
7.      W. Q. Li, X. H. Xiao*, Z. G. Dai*, W. Wu, L. Cheng, F. Mei, X. G. Zhang, C. Z. Jiang*, Fabrication of Highly Homogeneous Surface-Enhanced Raman Scattering Substrates Using Ag Ion Implantation, Journal of Physics: Condensed Matter 28 (2016) 254003-6;
8.      X. Q. Liu, D. Wan, Y. Wu, X. H. Xiao, S. S. Guo, C. Z. Jiang, J. C. Li, T. S. Chen, X. F. Duan, Z. Y. Fan, L. Liao* Transparent Megahertz Circuits from Solution-processed Composite Thin Films, Nanoscale 8 (2016) 7978;
9.      M. Lei, W. Wu*, S. L. Yang, X. H. Xiao*, X. G. Zhang, Z. Xing, F. Ren, C. Z. Jiang*, Design of Enhanced Catalysts by Coupling of Noble Metals of Au, Ag and Semiconductor SnO2 for Catalytic Reduction of 4-Nitrophenol, Particle & Particle Systems Characterization 33 (2016) 212-220;
10.  W. Q. Li, X. Q. Liu, Y. Q. Wang, Z. G. Dai, W. Wu, L. Cheng, Y. P. Zhang, Q. Liu*, X. H. Xiao*, C. Z. Jiang, Design of High-performance Memristor Cell Using W-implanted SiO2 Films, Applied Physics Letters 108 (2016) 153501;
11.  A. Abliz, C. W. Huang, J. L. Wang, L. Liao*, L. Xu, X. H. Xiao, W. W. Wu, Z. Y. Fan, C. Z. Jiang, J. C. Li, S. S. Guo, C. S. Liu, T. L. Guo, Rational Design of ZnO:H/ZnO Bilayer Structure for High Performance Thin Film Transistors, ACS Applied Materials & Interface 8 (2016) 7862;
12.  D. Wan, X. Q. Liu, L. Xu, C. S. Liu, X. H. Xiao, S. S. Guo, L. Liao*, The Study for Solution-Processed Alkali Metal Doped Indium Zinc Oxide Thin-Film Transistors, IEEE Electron Device Letters 37 (2016) 50;
2015
1.      X. Y. Song, Z. G. Dai, X. H. Xiao*, W. Q. Li, X. D. Zheng, X. Z. Shang, X. L. Zhang, G. X. Cai, W. Wu, F. L. Meng*, C. Z. Jiang, Formation of Carbonized Polystyrene Sphere/hemisphere Shell Arrays by Ion Beam Irradiation and Subsequent Annealing or Chloroform Treatment, Scientific Reports 5 (2015) 17529;
2.      J. Liu, S. L. Yang, W. Wu*, Q. Y. Tian, S. Y. Cui, Z. G. Dai, F. Ren, X. H. Xiao*, C. Z. Jiang*, 3D Flowerlike α-Fe2O3@ TiO2 Core–Shell Nanostructures: General Synthesis and Enhanced Photocatalytic Performance, ACS Sustainable Chemistry & Engineering 3 (2015) 2975-2984; (被选为封面故事)
3.      J. Liu, W. Wu*, Q. Y. Tian, S. L. Yang, L. L. Sun, X. H. Xiao*, F. Ren, C. Z. Jiang, Vellaisamy A. L. Roy*, Tube-like α-Fe2O3@Ag/AgCl heterostructure: controllable synthesis and enhanced plasmonic photocatalytic activity, RSC Advances 5 (2015) 61239-61248;
4.      J. L. Wang, S. L. Li, X. M. Zou, Johnny Ho, L. Liao*, X. H. Xiao, C. Z. Jiang, W. D. Hu, J. L. Wang, J. C. Li, Integration of High-k Oxide on MoS2 by Using Ozone Pretreatment for High-Performance MoS2 Top-Gated Transistor with Thickness-Dependent Carrier Scattering Investigation, Small 11 (2015) 5932-5938;
5.      Z. G. Dai, X. H. Xiao*, W. Wu, Y. P. Zhang, L. Liao, S. S. Guo, J. J. Ying, C. X. Shan*, M. T. Sun*, C. Z. Jiang, Plasmon-Driven Reaction Controlled by the Number of Graphene Layers and Localized Surface Plasmon Distribution during Optical Excitation, Light: Science & Applications  4 (2015) e342-7; (Nature Publishing Group) (被选为封面故事)
6.      G. M. Wang#, X. H. Xiao#, W. Q. Li, Z.Y. Lin, Z. P. Zhao, C. Chen, C. Wang, Y. J. Li, X. Q. Huang, L. Miao, C. Z. Jiang*, Y. Huang, X. F. Duan*, Significantly Enhanced Visible Light Photoelectrochemical Activity in TiO2 Nanowire Arrays by Nitrogen Implantation, Nano Letters 15 (2015) 4692-4698; (#These authors contributed equally to this work)
7.      M. Li, C. Z. Li, J. M. Wang, X. H. Xiao, Y. N. Yue*, Parallel measurement of conductive and convective thermal transport of micro/nanowires based on Raman mapping, Applied Physics Letters 106 (2015) 253108-5;
8.      Z. Y. Zhang, X. M. Zou, L. Xu, L. Liao*, W. Liu, J. Ho, X. H. Xiao*, C. Z. Jiang,  J. C. Li, Hydrogen gas sensor based on metal oxide nanoparticles decorated graphene transistor, Nanoscale 7 (2015) 10078-10084;
9.      M. Lei, W. Wu*, L. L. Sun, Q. Y. Tian, C. Z. Jiang, X. H. Xiao*, Controlled preparation of hollow SnO2@M (M = Au, Ag) heterostructures through template-assist method for enhanced photocatalysis, Colloids and Surfaces A: Physicochemical and Engineering Aspects 482 (2015) 276-282;
10.  F. L. Meng*, N. N. Hou, Z. Jin*, B. Sun, W. Q. Li, X. H. Xiao*, C. Wang, M. Q. Li, J. H. Liu, Sub-ppb detection of acetone using Au-modified flower-like hierarchical ZnO structures, Sensors and Actuators B: Chemical 219 (2015) 209-217;
11.  L. Liu, X. X. Wan, L. L. Sun, S. L. Yang, Z. G. Dai, Q. Y. Tian, M. Lei, X. H. Xiao, C. Z. Jiang, W. Wu*, Anion-mediated synthesis of monodisperse silver nanoparticles useful for screen printing of high-conductivity patterns on flexible substrates for printed electronics, RSC Advances 5 (2015) 9783-9791;
12.  W. Wu, L. Liu, Z. G. Dai, J. H. Liu, S. L. Yang, L. Zhou, X. H. Xiao, C. Z. Jiang, Vellaisamy A.L. Roy, Low-Cost, Disposable, Flexible and Highly Reproducible Screen Printed SERS Substrates for the Detection of Various Chemicals, Scientific Reports 5 (2015) 10208;
13.  Wei Wu*, Mei Lei, S. L. Yang, L. Zhou, L. Liu, X. H. Xiao, C. Z. Jiang, Vellaisamy A. L. Roy, A one-pot route to the synthesis of alloyed Cu/Ag bimetallic nanoparticles with different mass ratios for catalytic reduction of 4-nitrophenol, Journal of Materials Chemistry A 3 (2015) 3450-3455;
14.  Z. G. Dai, F. Mei, X. H. Xiao*, L. Liao, W. Wu, Y. P. Zhang, J. J. Ying, L. B. Wang, F. Ren, C. Z. Jiang, Monolayer Graphene on Nanostructured Ag for Enhancement of Surface-Enhanced Raman Scattering Stable Platform, Nanotechnology 26 (2015) 125603-9;
15.  X. G. Zhang, B. Wang, X. Z. Wang, X. H. Xiao*, Z. G. Dai, W. Wu, J. F. Zheng, F. Ren, C. Z. Jiang, Preparation of M@BiFeO3 nanocomposites (M = Ag, Au) bowl arrays with enhanced visible light photocatalytic activity, Journal of the American Ceramic Society 98 (2015) 2255-2263;
16.  L. Xu, C. W. Huang, A. Abliz, Y. Hua, L. Liao, W. W. Wu, X. H. Xiao, C. Z. Jiang, W. Liu, J. C. Li, The different roles of contact materials between oxidation interlayer and doping effect for high performance ZnO thin film transistors, Applied Physics Letters 106 (2015) 051607-5;
17.  J. L. Wang, X. M. Zou, X. H. Xiao, L. Xu, C. L. Wang, C. Z. Jiang, J. C. Ho, T. Wang, J. C. Li, L. Liao, Floating Gate Memory based Monolayer MoS2 Transistor with Metal Nanocrystals embedded in Gate Dielectrics, Small 11 (2015) 208-213;
18.  F. L. Meng, N. N. Hou, Z. Jin*, B. Sun, Z. Guo, L. T. Kong, X. H. Xiao*, H. Wu, M. Q. Li, J. H. Liu, Ag-decorated ultra-thin porous single-crystalline ZnO nanosheets prepared by sunlight induced solvent reduction and their highly-sensitive detection of ethanol, Sensors and Actuators B: Chemical 209 (2015) 975-982;
2014
1.      Z. G. Dai, X. H. Xiao*, W. Wu*, L. Liao, F. Mei, X. F. Yu, S. S. Guo, J. J. Ying, F. Ren and C. Z. Jiang*, Side-to-side Alignment of Gold Nanorods with Polarization-free Characteristic for Highly Reproducible Surface Enhanced Raman Scattering, Applied Physics Letters 105 (2014) 211902-5;
2.      Z. G. Dai, G. M. Wang, X. H. Xiao*, W. Wu, W. Q. Li, J. J. Ying, J. F. Zheng, F. Mei, L. Fu, J. Wang, C. Z. Jiang, Obviously Angular, Cuboid-shaped TiO2 Nanowire Arrays Decorated with Ag Nanoparticle as Ultra-sensitive 3D Surface-Enhanced Raman Scattering Substrates, Journal of Physical Chemistry C 118 (2014) 22711-22718;
3.      X. Q. Liu, X. Liu, J. L. Wang, C. N. Liao, X. H. Xiao, S. S. Guo, C. Z. Jiang, Z. Y. Fan, T. Wang, X. S. Chen, W. Lu, W. D. Hu, L. Liao, Transparent, High-Performance InGaZnO/Aligned-SnO2 Nanowires Composite Thin-Film Transistors and Their Application in Photodetectors, Advanced Materials 26 (2014) 7399-7404;
4.      J. F. Zheng, Z. G. Dai, F. Mei, X. H. Xiao*, L. Liao, W. Wu, X. Y. Zhao, J. J. Ying, Feng Ren and C. Z. Jiang*, Micro/nanosized Untraditional Evaporated Structures Based on Closely Packed Monolayer Binary Colloidal Crystals and Their Fine Structure Enhanced Properties, Journal of Physical Chemistry C 118 (2014) 20521–20528;
5.      W. Q. Li, L. Liao, X. H. Xiao*, X. Y. Zhao, Z. G. Dai, S. S. Guo, W. Wu, Y. Shi, J. X. Xu, F. Ren, C. Z. Jiang, Modulating the threshold voltage of oxide nanowire field-effect transistors by Ga+ ion beam, Nano Research 7 (2014) 1691-1698;
6.      X. M. Zou, J. L. Wang, C. H. Chiu, Y. Wu, X. H. Xiao, C. Z. Jiang, W. W. Wu, L. Q. Mai, T. S. Chen, J. C. Li, J. C. Ho, L. Liao, Interface Engineering for High-Performance Top-Gated MoS2 Field Effect Transistors, Advanced Materials 36 (2014) 6255-6261;
7.      L. Xu, Z. Li, X. Q. Liu, J. L. Wang, X. H. Xiao, C. Z. Jiang, Y. L. Liu, W. Chen, J. C. Li, L. Liao, Tunable elelctrical properties in high-valent transistion-metal doped ZnO thin film transistor, IEEE Electron Devices Letters 35 (2014) 759;
8.      Z. G. Dai, F. Mei, X. H. Xiao*, L. Liao, L. Fu, J. Wang, W. Wu, S. S. Guo, X. Y. Zhao, W. Li, F. Ren and C. Z. Jiang*, “Rings of Saturn-like” Nanoarrays with High Number Density of Hot Spots for Surface-Enhanced Raman Scattering, Applied Physics Letters 105 (2014) 033515-5;
9.      H. Huang , J. H. Wang , W. H. Jin , P. H. Li , M. Chen , H. H. Xie , X. F. Yu, H. Y. Wang , Z. G. Dai , X. H. Xiao and P. K. Chu, Competitive Reaction Pathway for Site-Selective Conjugation of Raman Dyes to Hotspots on Gold Nanorods for Greatly Enhanced SERS Performance, Small 19 (2014) 4012-4019;
10.  Q. Y. Tian, W. Wu, L. L. Sun, S. L. Yang, M. Lei, J. Zhou, Y. Liu, X. H. Xiao, F. Ren, C. Z. Jiang, and Vellaisamy A. L. Roy, Tube-Like Ternary α-Fe2O3@SnO2@Cu2O Sandwich Heterostructures: Synthesis and Enhanced Photocatalytic Properties, ACS Applied Materials & Interfaces 6 (2014) 13088–13097;
11.  W. Wu, S. L. Yang, J. Pan, L. L. Sun, J. Zhou, Z. G. Dai, X. H. Xiao, H. B. Zhang, C. Z. Jiang*, Metal Ion-Mediated Synthesis and Shape-dependent Magnetic Properties of Single-Crystalline α-Fe2O3 Nanoparticles, CrystEngComm 16 (2014) 5566-5572;
12.   L. L. Sun, W. Wu, S. L. Yang, J. Zhou, M. Q. Hong, X. H. Xiao, F. Ren, C. Z. Jiang*, Template and Silica Interlayer Tailorable Synthesis of Spindle-like Multilayer α-Fe2O3/Ag/SnO2 Ternary Hybrid Architectures and Their Enhanced Photocatalytic Activity, ACS Applied Materials & Interfaces 6 (2014) 1113-1124;
13.  S. F. Zhang, F. Ren, W. Wu, J. Zhou, L. L. Sun, X. H. Xiao, C. Z. Jiang, Size Effects of Ag Nanaoparticles on Plasmon-induced Enhancement of Photocatalysis of Ag-α-Fe2O3 Nanocomposites, Journal of Colloid and Interface Science 427 (2014) 29–34;
14.  J. X. Xu, C. Chen, X. H. Xiao*, L. Liao, L. Miao, W. Wu, F. Mei, A. L. Stepanov, G. X. Cai, Y. Liu, Z. G. Dai, F. Ren, C. Z. Jiang  and J. R. Liu, Synergistic effect of V/N codoping by ion implantation on the electronic and optical properties of TiO2, Journal of Applied Physics 115 (2014) 143106-6;
15.  X. Q. Liu, L. Jiang, X. M. Zou, X. H. Xiao, S. S. Guo, C. Z. Jiang, X. Liu, Z.Y. Fan, W. D. Hu, X. S. Chen, W. Lu, W. P. Hu, L. Liao, Scalable Integration of Indium Zinc Oxide/Photosensitive-Nanowire Composite Thin-Film Transistors for Transparent Multicolor Photodetectors Array, Advanced Materials 26 (2014) 2919–2924;
2013
1.      Z. G. Dai, X. H. Xiao*, L. Liao, J. F. Zheng, F. Mei, W. Wu, J. J. Ying, F. Ren, and C. Z. Jiang, Large-area, Well-ordered, Uniform-sized Bowtie Nanoantenna Arrays for Surface enhanced Raman scattering Substrate with Ultra-sensitive Detection, Applied Physics Letters 103 (2013) 041903-4;
2.      F. Mei, X. H. Xiao*, Z. G. Dai, J. X. Xu, Y. M. Zhou, C. Zhong and L. Z. Wu, Fabrication and optical properties of controlled Ag nanostructures for plasmonic applications, Journal of Applied Physics 114 (2013) 083523-6;
3.      X. Q. Liu, C. L Wang, X. H. Xiao, J. l. Wang, S. S. Guo, C. Z. Jiang, W. J. Yu, W. D. Hu, J. C. Li and L. Liao, High mobility amorphous InGaZnO thin film transistor with single wall carbon nanotubes enhanced-current path, Applied Physics Letters 103, (2013) 223108-4;
4.      X. M. Zou, J. L. Wang, X. Q. Liu, C. L. Wang, Y. Jiang, Y. Wang, X. H. Xiao, J. C. Ho, J. C. Li, C. Z. Jiang, Y. Fang, L. Liao*, Rational Design of Sub-ppm Specific Gas Sensors Array based on Metal Nanoparticles Decorated Nanowire Enhancement-Mode Transistors, Nano Letters 13 (2013) 3287-3292;
5.      W. Wu, L. Liao, S. F. Zhang, J. Zhou, X. H. Xiao*, F. Ren, L. L. Sun, Z. G. Dai and C. Z. Jiang*, Non-centrosymmetric Au/SnO2 Hybrid Nanostructures with Strong Localization of Plasmonic for Enhanced Photocatalysis Application, Nanoscale 5 (2013) 5628-5636;
6.      X. Q. Liu, W. Liu, X. H. Xiao, C. L. Wang, Z. Y. Fan, Y. Q. Qu, B. Cai, S. S. Guo, J. C. Li, C. Z. Jiang, X. F. Duan, L. Liao*, High performance amorphous ZnMgO/Carbon nanotubes composite thin-film transistors with tunable threshold voltage, Nanoscale 5 (2013) 2830;
7.      S. F. Zhang, F. Ren, W. Wu, J. Zhou, X. H. Xiao, L. L. Sun, Y. Liu and C. Z. Jiang*, Controllable synthesis of recyclable core–shell γ-Fe2O3@SnO2 hollow nanoparticles with enhanced photocatalytic and gas sensing properties, Physical Chemistry Chemical Physics 15 (2013) 8228-8236;
8.      J. Zhou, F. Ren, S. F. Zhang, W. Wu, X. H. Xiao, Y. Liu and C. Z. Jiang, SiO2–Ag–SiO2–TiO2 multi-shell structures: plasmon enhanced photocatalysts with wide-spectral-response, Journal of Materials Chemistry A 1 (2013) 13128–13138;
9.      J. J. Ying, X. H. Xiao*, Z. G. Dai, W. Wu, W. Q. Li, F. Mei, G. X. Cai, F. Ren and C. Z. Jiang*, Synthesis of graphene by MEVVA source ion implantation, Nuclear Instruments and Methods in Physics Research Section B 305 (2013) 29-32;
10.  Z. G. Dai, X. H. Xiao*, L. Liao, J. J. Ying, F. Mei, W. Wu, F. Ren, W. Q. Li and C. Z. Jiang*, Enhanced and Polarization Dependence of Surface-Enhanced Raman Scattering in Silver Nanoparticle Array-Nanowire Systems, Applied Physics Letters 102 (2013) 163108-3;
11.  W. Q. Li, X. H. Xiao*, A. L. Stepanov, Z. G. Dai, W. Wu, G. X. Cai, F. Ren and C. Z. Jiang*, The ion implantation-induced properties of one-dimensional nanomaterials,  Nanoscale Research Letters 8 (2013) 175;
12.  J. X. Xu, X. H. Xiao*, A. L. Stepanov, F. Ren, W. Wu, G. X. Cai, S. F. Zhang, Z. G. Dai, F. Mei and C. Z. Jiang*, Efficiency enhancements in Ag nanoparticles-SiO2–TiO2 sandwiched structure via plasmonic effect enhanced light capturing, Nanoscale Research Letters 8 (2013) 73;(Highly accessed)
13.  J. X. Xu, X. H. Xiao*, , A. L. Stepanov, F. Ren, F. Mei, W. Wu, G. X. Cai, C. Z. Jiang*, Fabrication and characterization of Ag-implantation modificated TiO2 films followed with thermal annealing, Nuclear Instruments and Methods in Physics Research Section B 307 (2013) 373-376;
14.  X. M. Zou, X. Q. Liu, C. L. Wang, Y. Jiang, Y. Wang, X. H. Xiao, J. C. Ho, J. C. Li, C. Z. Jiang, Q. H. Xiong, L. Liao*, Controllable electrical properties of metal doped In2O3 nanowires for high performance enhancement-mode transistors, ACS Nano 7 (2013) 804;
15.  C. L. Wang, X. Q. Liu, X. H. Xiao, Y. L. Liu, W. Chen, J. C. Li, G. Z. Shen, L. Liao*, High Mobility Solution-processed Amorphous Indium Zinc Oxide/In2O3 Nanocrystals Hybrid Thin Film Transistor, IEEE Electron Devices Letters 34 (2013) 72;
16.  J. X. Xu, X. H. Xiao*, F. Ren, X. D. Zhou, G. X. Cai, C. Z. Jiang*. Fabrication and evolution of nanostructure in Al2O3 single crystals by Zn+ ions implantation and thermal annealing, Vacuum 89 (2013) 132–135;
2012
1.      M. Q. Hong, F. Ren, H. X. Zhang, X. H. Xiao, B. Yang, C. X. Tian, D. J. Fu, Y. Q. Wang and C. Z. Jiang*, Enhanced radiation tolerance in nitride multilayered nanofilms with small period-thicknesses, Applied Physics Letters 101 (2012) 153117;
2.      W. Wu , X. H. Xiao, F. Ren, S. F. Zhang , C. Z. Jiang*, A Comparative Study of the Magnetic Behavior of Single and Tubular Clustered Magnetite Nanoparticles, JOURNAL OF LOW TEMPERATURE PHYSICS 168 (2012) 306-313;
3.      T. C. Peng, X. H. Xiao, F. Ren, J. X. Xu, X. D. Zhou, F. Mei, C. Z. Jiang*, Influence of annealing temperature on the properties of TiO2 films annealed by ex situ and in situ TEM, Journal of Wuhan University of Technology-Mater. Sci. Ed. 27 (2012) 1014-1019;
4.      L. L. Sun, W. Wu, S. F. Zhang, J. Zhou, G. X. Cai, F. Ren, X. H. Xiao, Z. G. Dai, and C. Z. Jiang*, Novel doping for synthesis monodispersed TiO2 grains filled into spindle-like hematite bi-component nanoparticles by ion implantation, AIP Advances 2 (2012) 032179
5.      W. Wu, S. F. Zhang, X. H. Xiao, F. Ren, and C. Z. Jiang*, Controllable Synthesis, Magnetic Properties and Enhanced Photocatalytic Activity of Spindle-like Mesoporous α-Fe2O3/ZnO Core-Shell Heterostructures, ACS Appl. Mater. Interface 4 (2012) 3602-3609;
6.      Z. G. Dai, X. H. Xiao*, Y. P. Zhang, F. Ren, W. Wu, S. F. Zhang, J. Zhou, F. Mei and C. Z. Jiang*, In situ Raman scattering study on a controllable plasmon-driven surface catalysis reaction on Ag nanoparticle arrays, Nanotechnology 23 (2012) 335701; (被选为封面故事)
7.      S. F. Zhang, F. Ren, W. Wu, J. Zhou, L. L. Sun, X. H. Xiao, J. X. Xu, C. Z. Jiang*, Modified in situ and self-catalytic growth method for fabrication of Ag-coated nanocomposites with tailorable optical properties, Journal of Nanoparticle Research 14 (2012) 1105;
8.      S. F. Zhang, W. Wu, X. H. Xiao, J. Zhou, J. X. Xu, F. Ren, C. Z. Jiang*, Polymer Supported Ag@AgAu Bimetallic Nanocomposites: Synthesis and Catalytic Properties, Chemistry - An Asian Journal 7 (2012) 1781-1788;
9.      X. Q. Liu, C. L. Wang, B. Cai, X. H. Xiao, S. S. Guo, Z. Y. Fan, J. C. Li, X. F. Duan and L. Liao*, Rational Design of Amorphous Indium Zinc Oxide/Carbon Nanotubes Hybrid Film for Unique Performance Transistor, Nano Letters 12 (2012) 3596-3601;
10.  J. X. Xu, X. H. Xiao*, F. Ren, W. Wu, Z. G. Dai, G. X. Cai, S. F. Zhang, J. Zhou, F. Mei and C. Z. Jiang*, Enhanced photocatalysis by coupling of anatase TiO2 film to triangular Ag nanoparticles’ island, Nanoscale Research Letters 7 (2012) 239;
11.  T. C. Peng, X. H. Xiao*, W. Wu, L. X. Fan, X. D. Zhou, F. Ren, and C. Z. Jiang*, Size control and magnetic properties of single layer monodisperse Ni nanoparticles prepared by magnetron sputtering, Journal of Materials Science 47 (2012) 508-513;
12.  X. D. Zhou, F. Ren, X. H. Xiao, J. X. Xu, Z. G. Dai, G. X. Cai and C. Z. Jiang*, Origin of white light luminescence from Si+/C+ sequentially implanted and annealed silica, Journal of Applied Physics 111 (2012) 084304-7;
2011
1.      T. C. Peng, X. H. Xiao*, X. Y. Han, X. D. Zhou, W. Wu, F. Ren and C. Z. Jiang*, Characterization of DC Reactive Magnetron Sputtered NiO Films Using Spectroscopic Ellipsometry,Applied Surface Science 257 (2011) 5908-5912;
2.      X. D. Zhou , X. H. Xiao, J. X. Xu , G. X. Cai , F. Ren, C. Z. Jiang*, Mechanism of the enhancement and quenching of ZnO photoluminescence by ZnO-Ag coupling, Europhysics  Letters 93 (2011) 57009;
3.      W. Wu, X. H. Xiao, T. C. Peng, C. Z. Jiang*, Growth Spindle-like ZnO Nanocrystalline Thin Films on Nickel Layers by dc Magnetron Sputtering and Its Thermal Annealing Properties. Materials Research Forum 675-677 (2011) 1097-1100;
4.      W. Wu, X. H. Xiao, S. F. Zhang, F. Ren, and C. Z. Jiang*, Facile Method to Synthesize Magnetic Iron Oxides/TiO2 Hybrid Nanoparticles and Their Photodegradation Application of Methylene Blue, Nanoscale Research Letter  6 (2011) 533;
5.      W. Wu, S. F. Zhang, F. Ren, X. H. Xiao, J. Zhou and C. Z. Jiang*, Controlled Synthesis of Magnetic Iron Oxides@SnO2 Quasi-Hollow Core-Shell Heterostructures: Formation Mechanism, and Enhanced Photocatalytic Activity,Nanoscale  3 (2011) 4676 – 4684;
6.      W. Wu, S. F. Zhang, J. Zhou, X. H. Xiao, F. Ren, and C. Z. Jiang*, Controlled Synthesis of Monodisperse Sub-100 nm Hollow SnO2 Nanospheres: Template- and Surfactant-Free Solution Phase Route, Growth Mechanism, Optical Properties and Application as Photocatalyst. Chemistry-A European Journal 17 (2011) 9708-9719;
7.      S. F. Zhang, W. Wu, X. H. Xiao, J. Zhou, F. Ren, C. Z. Jiang*, Preparation and characterization of spindle-like Fe3O4 mesoporous nanoparticles, Nanoscale Research Letters 6 (2011) 89;
2010
1.      X. H. Xiao*, F. Ren, X. D. Zhou , T. C. Peng, W. Wu, X. N. Peng, X. F. Yu and C. Z. Jiang*, Surface plasmon-enhanced light emission using silver nanoparticles embedded in ZnO, Applied Physics Letters 97 (2010) 071909-3;
2.      X. H. Xiao, W. Dong , W. Wu, T. C. Peng, X. D. Zhou, F. Ren, C. Z. Jiang*, Antibacterial silver-containing silica glass prepared by ion implantation, Journal of Nanoscience and Nanotechnology 10 (2010) 6424-6427;
3.      J. X. Xu, X. H. Xiao*, F. Ren, and C. Z. Jiang, Controlling the microstructure of ZnO nanoparticles embedded in Sapphire by Zn ion implantation and subsequent annealing, Nuclear Instruments and Methods in Physics Research Section B 268 (2010) 2702–2705;
4.      W. Wu, X. H. Xiao, S. F. Zhang, J. Zhou, L. X. Fan, F. Ren and C. Z. Jiang, Large-Scale and Controlled Synthesis of Iron Oxide Magnetic Short Nanotubes: Shape Evolution, Growth Mechanism, and Magnetic Properties, Journal of Physical Chemistry C 114 (2010) 16092–16103;
5.      W. Wu, X. H. Xiao, S. F. Zhang, T. C. Peng, J. Zhou, F. Ren and C. Z. Jiang, Synthesis and Magnetic Properties of Maghemite (γ-Fe2O3) Short-Nanotubes, Nanoscale Research Letters 5 (2010) 1474-1479;
6.      W. Wu, X. H. Xiao, S. F. Zhang, J. Zhou, F. Ren, and C. Z. Jiang, Controllable Synthesis of TiO2 Submicrospheres with Smooth or Rough Surface, Chemistry Letters 39 (2010) 684-685;
7.      Y. Zhang, J. Liu, X. H. Xiao, T. C. Peng, C. Z. Jiang, Y. H. Lin and C. W. Nan,Large reversible electric-voltage manipulation of magnetism in NiFe/BaTiO3 heterostructures at room temperature, Journal of Physics D: Applied Physics 43 (2010) 082002-5;
8.      W. Wu, X. H. Xiao, T. C. Peng, C. Z. Jiang, Controllable Synthesis and Optical Properties of Connected Zinc Oxide Nanoparticles, Chemistry-An Asian Journal 5 (2010) 315-321;
9.      W. Wu, X. H. Xiao, S. F. Zhang, L. X. Fan, T. C. Peng, F. Ren, C. Z. Jiang, Facile Fabrication of Ultrafine Hollow Silica and Magnetic Hollow Silica Nanoparticles by a Dual-templates Method, Nanoscale Research Letters 5 (2010) 116-123;


  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖
回复

使用道具 举报

68

主题

78

帖子

80

积分

注册会员

Rank: 2

积分
80
沙发
发表于 2018-7-27 08:32:26 | 只看该作者
研究亮点:
采用离子注入法制备了C/N共掺杂TiO2纳米棒阵列,可见光下光解水电流密度高达0.76 mA/cm2,远高于TiO2的3 μA/cm2。450 nm的IPEC可达14.8%。

对于水解离反应,光电化学法相较于光化学和光伏电解技术具有更直接且成本更低的优势。TiO2自1972年经Fujishima和Honda等人发现可以经光电化学解离水之后,便受到了广泛研究。但是受限于TiO2的禁带宽度问题,在光电转换中往往只有紫外光可以被有效利用。

为增加能量利用率,过去几十年中科研工作者一直在尝试改变其带隙。其中最广泛使用的方法是在TiO2中掺杂其他元素,如B, C, N, S等。相较于单种元素掺杂,多元素的共掺杂在一定程度上效果更好。如C,N共掺杂就被认为潜在的最佳组合。

但是常用的水热或者高温老化等方法面临诸多问题,如难以控制掺杂量、掺杂比例和元素分布等,使得所得到的共掺杂材料的光电转换效率并不高。在半导体产业中,离子注入法常用于改变半导体理化性质和电子结构,这种方法具有简便可控的优势,可以高效地实现一种或多种金属和非金属离子的可控掺杂。

有鉴于此,武汉大学肖湘衡中科大王功名团队合作,利用离子注入法在TiO2中引入大量N-Ti键和Ti3+物种,大幅提升了可见光范围的光吸收和电子分离效率。


综上,本研究报道了一种将高效的离子注入法,在TiO2阵列上实现了C/N的可控共掺杂,将TiO2点石成金,大幅提升其可见光电解水的效率。作者认为该方法不仅适用于TiO2,在其他类型的材料上也具有较大的应用潜能。


参考文献:
Song X, Li W, He D, etal. The “Midas Touch” Transformation of TiO2 Nanowire Arrays during Visible Light Photoelectrochemical Performance by Carbon/Nitrogen Coimplantation[J]. Advanced Energy Materials, 2018.
DOI: 10.1002/aenm.201800165
https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.201800165

回复 支持 反对

使用道具 举报

11

主题

21

帖子

27

积分

新手上路

Rank: 1

积分
27
板凳
发表于 2019-3-20 09:03:50 | 只看该作者
武汉大学肖湘衡教授、浙江大学杨士宽教授和武汉大学中南医院汪付兵教授受到分子印迹的启发,设计了一种新的具有体“热点”的体增强拉曼散射(VERS)基底。该基底由底部具有纳米锥孔的微米尺寸碗阵列组成,纳米锥孔的直径可以根据病毒的尺寸进行调节。

该工作成功的解决了常规SERS基底在检测病毒时,病毒取向对拉曼信号不可重复性的影响。使用VERS基底,单个病毒的拉曼信号的完整性和重复性得到了极大的改善,这一成果在疾病诊断和监视,生物医学领域,以及临床治疗方面都具有重要的应用前景。该研究工作为SERS基底在检测大尺寸分析物方面提供了一种重要的思路和方法。
参考文献:
Xingang Zhang, Xiaolei Zhang, Changliang Luo,Zhengqi Liu, Yiyun Chen, Shilian Dong, Changzhong Jiang, Shikuan Yang, FubingWang, Xiangheng Xiao. Volume‐Enhanced Raman Scattering Detection of Viruses.Small, 2019.
DOI: 10.1002/smll.201805516
https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201805516

回复 支持 反对

使用道具 举报

31

主题

47

帖子

66

积分

注册会员

Rank: 2

积分
66
地板
发表于 2022-2-8 11:17:57 | 只看该作者
通过电能或者太阳能等清洁能源驱动水分解生成氢气是一种十分简便、高效的氢能制取途径,有助于无碳能源体系的建立和“碳达峰、碳中和”可持续发展目标的实现。为了实现水分解制氢技术在工业上的大规模应用,开发高效、耐用和低成本的催化剂以取代传统的贵金属催化剂是当前研究的重点和难点所在。
        二氧化钨(WO2)由于具有廉价、安全无毒以及独特的物理化学性质等诸多优势而被作为一种重要的功能材料应用于多个领域。更有趣的是,WO2晶体结构中除了具有传统氧化物中金属-氧(W-O)配位外还存在较强的金属-金属(W-W)配位,表现出类金属的特性。其优异的电子传输能力十分有利于电子参与的水分解反应,具有作为高效水分解催化剂或催化剂载体的潜力。然而,W-W配位虽然赋予WO2良好的电子输运能力,但与此同时W-W位点对氢的强吸附严重阻碍了氢在催化剂表面的解吸过程,导致在实际催化反应中其析氢活性并不理想。
       近日,武汉大学肖湘衡教授团队与中国科学技术大学王功名教授合作报道关于金属氧化物中d-d轨道配位结构精细调控的最新研究成果。研究团队以具有金属性的WO2作为模型材料,深入研究了WO2中W-O双八面体中金属与金属原子之间d-d轨道相互作用本质并且提出了金属-金属轨道耦合调控策略。理论计算发现通过调控双八面体中反键轨道中的电子填充度可以有效地调节金属-金属配位强度,通过使用具有更高d带电子填充的M杂原子(M = Fe、Co、Ni、Cu等)取代W原子可以梯度削弱W-M键从而实现其d-d轨道配位结构的精细调控。进一步计算结果显示W-M活性位点对于氢吸附强度也得到相关性的调节,并且Ni-M配位表现出最优的氢吸附强度。


图1:M-WO2配位结构和氢吸附能理论计算分析
         在此理论指导的基础上,研究团队通过化学掺杂制备了一系列具有过渡金属杂原子调控的WO2催化剂。XRD,HRTEM,EDS等相关表征计算结果显示样品呈现良好的纳米线形貌以及均匀的替代位掺杂。进一步通过XANES和EXAFS等表征测试对Ni掺杂引起的WO2中局部构型的变化进行深入表征分析,测试结果显示由于WO2中Ni原子的引入导致微观配位结构的变化,相对于原始WO2中的W-W配位,Ni-WO2中的W-W/Ni配位呈现出更大的配位键长,这一结果吻合理论计算中的结果分析。
        基于前述对催化剂晶体结构和配位调控的研究基础,研究人员通过三电极体系对系列过渡金属杂原子调控的WO2催化剂碱性HER催化活性进行评估测试。测试结果显示,相对于WO2,随着过渡金属M杂原子(M = Fe、Co、Ni、Cu等)引入对W-M活性位点配位强度和氢吸附能力的梯度调控,其HER反应活性也呈现出相关性变化,并且Ni-WO2样品表现出最为优异的HER反应活性。其在-10 mA/cm2的电流密度下所需过电位仅为41 mV,并且在超过100小时的稳定性测试中表现出优异的性能保持性,远优于单纯的WO2(330 mV),代表了迄今为止最佳的钨基水分解析氢(HER)催化剂之一。
         综上,该工作对金属氧化物中金属-金属耦合配位结构的作用本质进行了深入研究,并且该金属-金属轨道耦合调控的策略可以为其他过渡金属氧化物微观配位的精细调控和相关应用设计提供有价值的见解和参考意义。
论文信息:
Optimizing Hydrogen Adsorption by d–d Orbital Modulation for Efficient Hydrogen Evolution Catalysis
Jiangchao Liu, Chongyang Tang, Zunjian Ke, Rui Chen, Hongbo Wang, Wenqing Li, Changzhong Jiang, Dong He*, Gongming Wang*, Xiangheng Xiao*
Advanced Energy Materials
DOI: 10.1002/aenm.202103301
原文链接:https://onlinelibrary.wiley.com/doi/10.1002/aenm.202103301

回复 支持 反对

使用道具 举报

160

主题

190

帖子

330

积分

中级会员

Rank: 3Rank: 3

积分
330
5#
发表于 2022-10-18 11:02:44 | 只看该作者
硫代磷酸铁(FePS3)是一种典型的低成本层状金属硫代磷酸盐(MTPs),由FeS6和P2S6多面体组成,通过共享界面提供了丰富的金属铁中心和非金属P中心位置,可以作为整体电解水的潜在催化剂,受到越来越多的关注。然而,在最近的研究中,MTPs的性能在实际电解方面还远远不能令人满意。低碱性水电解过程中氧的吸附和脱附动力学缓慢,这本质上是由FePS3的固有电子结构特性决定的。由于空间效应,FePS3中间层Fe 3dz2杂化轨道和羟基/水存在较小的相互作用,实际阻碍了铁原子的吸附。而这些含氧中间体在电负性高的磷(P)上的吸附作用也限制了催化活性。受上述启发,合理调整表面催化位点的电子结构,使其具有高效的碱性水裂解催化活性是非常理想的,但同样具有挑战性。
        基于此,武汉大学肖湘衡教授等人报道了一种通过锚定原子分散的金属原子来调整FePS3纳米片(NSs)的表面电子结构的一种方法。单原子Ni-FePS3的强电子耦合效应促进了铁原子向附近的镍s键的电子聚集,增强了Ni和S位点的电子转移,平衡了氧的吸附能力,增强了水的吸附和解离过程,加速了相应的析氧反应(OER)和析氢反应(HER)。
       本文要点:
        1) 理论预测确定可能的化学构型,并评估了HER过程中能量势垒的相应变化:Ni取代FePS3的Fe位点后,Fe原子的电子倾向于向相反的Ni-S键流动,使得Fe的电子密度较低,S的负电荷较多;随着S原子的电荷从0.38增加到0.45,Ni-S键处的电荷分布也发生了变化
        2) 通过简易浸渍吸附和进一步的氩气气氛退火制备了由原子分散的金属原子锚定的FePS3 NSs,在FePS3上引入Ni后没有产生新的相,Ni在FePS3 NSs上是均匀分布的。Ni-FePS3中较短的Fe-S键是由于引入的Ni原子促进了电子从Fe原子聚集到附近的Ni-S键,从而加强了Fe和S原子之间的电荷相互作用。
        3) Ni-FePS3 NSs/C、Co-FePS3 NSs/C和Pd-FePS3 NSs/C在10 mAcm-2电流密度下的的OER过电位分别为287、320和400 mV,远低于FePS3 NSs/C (474 mV)。在HER方面也表现出有意的性能。
        Chongyang Tang, Dong He, Nan Zhang, Xianyin Song, Shuangfeng Jia, Zunjian Ke, Jiangchao Liu, Jianbo Wang, Changzhong Jiang, Ziyu Wang*, Xiaoqing Huang*, and Xiangheng Xiao*, Electronic Coupling of Single Atom and FePS3 Boosts Water Electrolysis. Energy Environ. Mater., 2022, 5: 899-905.

回复 支持 反对

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-5-4 19:26 , Processed in 0.099499 second(s), 38 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表