找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 1183|回复: 1
打印 上一主题 下一主题

[专家学者] 苏州大学纳米科学技术学院文震

[复制链接]

57

主题

70

帖子

76

积分

注册会员

Rank: 2

积分
76
跳转到指定楼层
楼主
发表于 2018-4-18 19:11:00 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
文震,博士,苏州大学副研究员,2011年本科毕业于中国矿业大学,2016年博士毕业于浙江大学,2014—2016年公派留学美国王中林院士课题组,2016年9月加盟苏州大学。主要从事摩擦纳米发电机关键材料制备、器件设计构筑及模型机理分析等方面的研究。


文震
电话:0512-65882337
邮箱:wenzhen2011@suda.edu.cn

学术经历:
2007.8~2011.6  中国矿业大学  材料科学与工程专业  工学学士学位;
2011.8~2016.9  浙江大学  材料物理与化学专业  工学博士学位;
2014.9~2016.2  美国佐治亚理工学院(GT)  王中林课题组 联合培养博士;
2016.9  加入苏州大学功能纳米与软物质研究院(FUNSOM)
所在课题组:
孙旭辉教授课题组(课题组链接: http://nano.suda.edu.cn/green/index.asp)
研究方向:
1. 气敏传感材料制备及其机理研究
2. 纳米能源材料及自驱动传感系统研究
3. 基于摩擦纳米发电机的新能源器件研究
4. 柔性/可穿戴电子学
代表性论文:
已发表SCI论文三十余篇,总引用次数超过450次,h-index=12,i10-index=15
Google Scholar: https://scholar.google.com/citations?user=_AP52WgAAAAJ&hl=zh-CN
SCI Publication Record: http://www.researcherid.com/rid/B-2462-2016
具体如下(δ: 共同作者; *: 通讯作者):
[1] Z. Wenδ, M.-H. Yehδ, H. Guoδ, J. Wang, Y. Zi, W. Xu, L. Zhu, J. Deng, X. Wang, L. Zhu, X. Sun and Z. L. Wang*. Self-Powered Textile System by Hybridizing All-Fibers-shaped Triboelectric Nanogenerator - Dye-Sensitized Solar Cell - Supercapacitor for Wearable Electronics. Science Advances, 2016, 2, e1600097.
[2] Z. Wenδ, H. Guoδ, Y. Ziδ, M.-H. Yeh, X. Wang, J. Deng, J. Wang, S. Li, C. Hu, L. Zhu and Z. L. Wang*. Harvesting Broad Frequency-band Blue Energy by a Triboelectrification-Electromagnetic Hybrid Nanogenerator. ACS Nano, 2016, 10, 6526-6534. (2016 SCI-IF 13.334)
[3] Z. Wenδ, J. Chenδ, M.-H. Yehδ, H. Guo, Z. Li, X. Fan, T. Zhang, L. Zhu* and Z. L. Wang*. Blow-driven triboelectric nanogenerator as an active alcohol breathe analyzer. Nano Energy, 2015, 16, 38-46. (2016 SCI-IF 11.553)
[4] Z. Wen, L. Zhu*, Z. Zhang and Z. Ye. Fabrication of gas sensor based on mesoporous rhombus-shaped ZnO rod arrays. Sensors and Actuators B: Chemical, 2015, 208, 112-121. (2016 SCI-IF 4.758)
[5] Z. Wen, L. Zhu*, Y. Li, Z. Zhang and Z. Ye. Mesoporous Co3O4 nanoneedle arrays for high-performance gas sensor. Sensors and Actuators B: Chemical, 2014, 203, 873-879. (2016 SCI-IF 4.758)
[6] Z. Wen, L. Zhu*, L. Li, L. Sun, H. Cai and Z. Ye. A fluorine-mediated hydrothermal method to synthesize mesoporous rhombic ZnO nanorod arrays and their gas sensor application. Dalton Transactions, 2013, 42, 15551-15554. (2016 SCI-IF 4.177)
[7] Z. Wen, L. Zhu*, W. Mei, L. Hu, Y. Li, L. Sun, H. Cai and Z. Ye. Rhombus-shaped Co3O4 nanorod arrays for high-performance gas sensor. Sensors and Actuators B: Chemical, 2013, 186, 172-179. (2016 SCI-IF 4.758)
[8] Z. Wen, L. Zhu*, W. Mei, Y. Li, L. Hu, L. Sun, W. Wan and Z. Ye. A facile fluorine-mediated hydrothermal route to controlled synthesis of rhombus-shaped Co3O4 nanorod arrays and their application in gas sensing. Journal of Materials Chemistry A, 2013, 1, 7511-7518. (2016 SCI-IF 8.262)
[9] J. Wangδ, Z. Wenδ, Y. Ziδ, P. Zhou, J. Lin, H. Guo, Y. Xu and Z. L. Wang*. All-Plastic-Materials Based Self-charging Power System Composed of Triboelectric Nanogenerators and Supercapacitors. Advanced Functional Materials, 2016, 26, 1070-1076. (2016 SCI-IF 11.382)
[10] H. Guoδ, Z. Wenδ, Y. Ziδ, M.-H. Yeh, L. Zhu, C. Hu and Z. L. Wang*. A Water-Proof Triboelectrification and Electromagnetic Induction Hybrid Generator for Harvesting Rotational Energy in Harsh Environments. Advanced Energy Materials, 2016, 6, 1501593. (2016 SCI-IF 15.230)
[11] J. Wangδ, Z. Wenδ, Y. Ziδ, L. Lin, C. Wu, H. Guo, Y. Xi, Y. Xu and Z. L. Wang*. Self-powered electrochemical synthesis of polypyrrole from pulsed output of triboelectric nanogenerator as a sustainable energy system. Advanced Functional Materials, 2016, 26, 3542-3548. (2016 SCI-IF 11.382)
[12] Y. Ziδ, H. Guoδ, Z. Wenδ, M.-H. Yeh, C. Hu and Z. L. Wang*. Harvesting Low-Frequency (<5 Hz) Irregular Mechanical Energy: A Possible Killer Application of Triboelectric Nanogenerator. ACS Nano, 2016, 10, 4797-4805. (2016 SCI-IF 13.334)
[13] L. Zhuδ, *, Z. Wenδ, W. Mei, Y. Li and Z. Ye. Porous CoO nanostructure arrays converted from rhombic Co(OH)F and needle-like Co(CO3)0.5(OH)・0.11H2O and their electrochemical properties. The Journal of Physical Chemistry C, 2013, 117, 20465-20473. (2016 SCI-IF 4.509)
[14] Z. Zhang, Z. Wen, Z. Ye and L. Zhu*. Gas sensor based on ultrathin porous Co3O4 nanosheets for selective acetone detection at low temperature. RSC Advances, 2015, 5, 59976-59982. (2016 SCI-IF 3.289)
[15] Z. Zhang, L. Zhu*, Z. Wen, Z. Ye. Controllable synthesis of Co3O4 crossed nanosheet arrays toward an acetone gas sensor. Sensors and Actuators B: Chemical, 2017, 238, 1052-1059. (2016 SCI-IF 4.758)
[16] S. Liδ, S. Wangδ, Y. Zi, Z. Wen, L. Long, G. Zhang and Z. L. Wang*. Largely improving the robustness and lifetime of triboelectric nanogenerators through automatic transition between contact and noncontact working states. ACS Nano, 2015, 9, 7479-7487. (2016 SCI-IF 13.334)
[17] Y. Ziδ, S. Niuδ, J. Wang, Z. Wen, W. Tang and Z. L. Wang*. Standards and Figure of Merits for Quantifying the Performance of Triboelectric Nanogenerators. Nature Communications, 2015, 6, 8376. (2016 SCI-IF 111.329)
[18] M.-H. Yehδ, H. Guoδ, L. Lin, Z. Wen, Z. Li, C. Hu and Z. L. Wang*. Rolling friction enhanced free-standing triboelectric nanogenerators and its applications in self-powered electrochemical recovery system. Advanced Functional Materials, 2016, 26, 1504-1062. (2016 SCI-IF 11.382)
[19] W. Wan, J. Huang, L. Zhu*, L. Hu, Z. Wen, L. Sun and Z. Ye. Defects induced ferromagnetism in ZnO nanowire arrays doped with copper. CrystEngComm, 2013, 15, 7887-7894. (2016 SCI-IF 3.849)
[20] W. Dai, X. Pan*, S. Chen, C. Chen, Z. Wen, H. Zhang, and Z. Ye*. Honeycomb-like NiO/ZnO heterostructured nanorods: photochemical synthesis, characterization, and enhanced UV detection performance. Journal of Materials Chemistry C, 2014, 2, 4606-4614. (2016 SCI-IF 5.066)
[21] H. Guoδ, J. Chenδ, M.-H. Yeh, X. Fan, Z. Wen, Z. Li, C. Hu* and Z. L. Wang*. An Ultrarobust High-Performance Triboelectric Nanogenerator Based on Charge Replenishment. ACS Nano, 2015, 9, 5577-5584. (2016 SCI-IF 13.334)
[22] Y. Ziδ, J. Wangδ, S. Wang, S. Li, Z. Wen, H. Guo and Z. L. Wang*. Effective Energy Storage from Triboelectric Nanogenerators. Nature Communications, 2016, 7, 10987. (2016 SCI-IF 11.329)
[23] Z. Liδ, J. Chenδ, H. Guo, X. Fan, Z. Wen, M. -H. Yeh, C. Yu, X. Cao* and Z. L. Wang*. Triboelectrification-Enabled Self-Powered Detection and Removal of Heavy Metal Ions in Wastewater. Advanced Materials,2016, 28, 2983-2991. (2016 SCI-IF 18.960)
[24] L. Ding, M. Zhao*, Y. Ma, S. Fan, Z. Wen, J. Huang, J. Liang, S. Chen*. Triggering interface potential barrier: A controllable tuning mechanism for electrochemical detection. Biosensors and Bioelectronics, 2016, 85, 869-875. (2016 SCI-IF 7.476)
[25] Q. Jiang, J. Lu*, Y. Yuan, L. Sun, X. Wang, Z. Wen, Z. Ye, D. Xiao, H. Ge and Y. Zhao. Tailoring the morphology, optical and electrical properties of DC-sputtered ZnO: Al films by post thermal and plasma treatments. Materials Letters, 2013, 106, 125-128. (2016 SCI-IF 2.437)
[26] Y. Li, L. Zhu*, Y. Guo, J. Jiang, L. Hu, Z. Wen, L. Sun and Z. Ye. Iodine-ion-induced size-tunable Co3O4nanowires and the size-dependent catalytic performance for CO oxidation. ChemCatChem, 2013, 5, 3576-3581. (2016 SCI-IF 4.724)
[27] J. Chenδ, J. Yangδ, H. Guo, Z. Li, L. Zheng, Y. Su, Z. Wen, X. Fan and Z. L. Wang*. Automatic Mode Transition Enabled Robust Triboelectric Nanogenerators. ACS Nano, 2015, 9, 12334-12343. (2016 SCI-IF 13.334)
[28] Y.-C. Lai, S. Niu, J. Deng, W. Peng, C. Wu, R. Liu, Z. Wen, Z. L. Wang*. Electric Eel-Skin-Inspired Mechanically Durable and Super-Stretchable Nanogenerator for Deformable Power Source and Fully Autonomous Conformable Electronic-Skin Applications. Advanced Materials, 2016, DOI: 10.1002/adma.201603527. (2016 SCI-IF 18.960)
[29] Z. Liδ, J. Chenδ, J. Zhouδ, L. Zheng, K. Pradel, X. Fan, H. Guo, Z. Wen, M.-H. Yeh, W. Yu and Z. L. Wang*. High-efficiency Ramie Fiber Degumming and Self-powered Degumming Wastewater Treatment Using Triboelectric Nanogenerator. Nano Energy, 2016, 22, 548-557. (2016 SCI-IF 11.553)
[30] L. Zhang, Z. Gao, C. Liu, Y. Zhang, Z. Tu, X. Yang, F. Yang, Z. Wen, L. Zhu, R. Liu, Y. Li* and L. Cui*. Synthesis of TiO2 decorated Co3O4 acicular nanowire arrays and their application as an ethanol sensor. Journal of Materials Chemistry A, 2015, 3, 2794-2801. (2016 SCI-IF 8.262)
[31] J. Chenδ, J. Yangδ, Z. Liδ, X. Fan, Y. Zi, Q. Jing, H. Guo, Z. Wen, K. Pradel, S. Niu and Z. L. Wang*. Networks of Triboelectric Nanogenerators for Harvesting Water Wave Energy: A Potential Approach toward Blue Energy. ACS Nano, 2015, 9, 3324-3331. (2016 SCI-IF 13.334)
[32] F. Yiδ, X. Wangδ, S. Niuδ, S. Li, Y. Yin, K. Dai, G. Zhang, L. Lin, Z. Wen, H. Guo, J. Wang, M.-H. Yeh, Y. Zi, Q. Liao, Z. You, Y. Zhang* and Z. L. Wang*. A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring. Science Advances, 2016, 2, e1501624.





  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖
回复

使用道具 举报

360

主题

392

帖子

524

积分

高级会员

Rank: 4

积分
524
沙发
发表于 2021-9-21 10:03:23 | 只看该作者
柔性电子例如人造皮肤、健康监测设备等,在可穿戴电子设备中具有广阔的前景。经过研究者们的努力,柔性电子器件的高拉伸性可以通过材料设计和制备工艺来实现。然而,该领域面临着一个很大的挑战,就是缺乏合适的柔性电源来给柔性电子器件供电。可拉伸摩擦纳米发电机(TENG)的诞生为柔性电子供电提供了一种有效的策略。然而,由于摩擦纳米发电机的工作机理限制,在发电过程中必然会发生不同程度的损坏,如拉伸断裂和摩擦磨损。这种损坏将会导致TENG的故障和输出性能的下降。因此,很有必要设计一种具有高拉伸性,并且可以修复断裂和磨损的摩擦纳米发电机。
图1. (a) US-TENG结构设计示意图;(b) US-TENG在不同频率下的电学输出;(c) US-TENG在不同应变下的示意图;(d) US-TENG 在不同应变下的电学输出。
        苏州大学文震副研究员团队设计制备了一种具有高拉伸性(10000%)以及优异自修复性能的聚合物,并基于此聚合物制备了可以在室温下修复断裂和磨损的高拉伸摩擦纳米发电机(US-TENG)。在接触分离模式下工作,2×2 cm2大小的US-TENG的电学输出在短路转移电荷(Qsc)、开路电压(Voc)和短路电流(Isc)方面可以达到40 nC、140 V和1.5 μA。此外,在拉伸至初始长度的1800%后,US-TENG仍然能保持较高的电学输出。在拉伸断裂后,US-TENG可以在20分钟内实现修复,恢复电学输出;在摩擦磨损后,可以在2小时内实现修复,恢复电学输出。这种具有超高拉伸性和优异自修复性能的摩擦纳米发电机可以满足柔性可穿戴电子设备的长期广泛应用,促进了柔性电子设备的发展。


论文信息:
Abrasion and Fracture Self-Healable Triboelectric Nanogenerator with Ultrahigh Stretchability and Long-Term Durability
Jinxing Jiang, Qingbao Guan, Yina Liu, Xuhui Sun, Zhen Wen*
Advanced Functional Materials
DOI: 10.1002/adfm.202105380
原文链接:https://onlinelibrary.wiley.com/doi/10.1002/adfm.202105380

回复 支持 反对

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-5-3 21:10 , Processed in 0.111939 second(s), 38 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表