找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 1681|回复: 1
打印 上一主题 下一主题

2017诺贝尔化学奖-冷冻电子显微镜

[复制链接]

290

主题

341

帖子

3353

积分

管理员

Rank: 9Rank: 9Rank: 9

积分
3353
楼主
发表于 2017-10-4 18:12:16 | 显示全部楼层
       电子显微镜于1931年发明,但在生物学领域的应用滞后于材料科学,原因在于生物样品含水分才会稳定,而电子显微镜必须在高真空下才能工作,因此如何制作高分辨率生物电镜样品是个技术瓶颈。传统的重金属负染技术,可以让重金属包被蛋白表面,然后脱水干燥制作适合真空成像的样品,但这会导致样品分辨率降低(至多保存1.5纳米)。

       1968年,英国剑桥大学MRC实验室的Klug博士和他的学生DeRosier开创了基于负染的噬菌体病毒的电镜三维重构技术(Klug 博士获1982年诺贝尔化学奖)。但如何保持生物样品原子分辨率结构又适合电镜成像呢?加州大学伯克利分校的Robert Glaeser博士和他学生Ken Taylor 于1974年首次提出并测试了冷冻含水生物样品的电镜成像,可以有效降低辐照损伤对高分辨率结构破坏和维持高真空,实现高分辨率成像的新思路,这就是冷冻电镜(CryoEM)的雏形。

       1982年,Dubochet 博士领导的小组开发出真正成熟可用的快速投入冷冻制样技术制作不形成冰晶体的玻璃态冰包埋样品,随着冷台技术的开发,冷冻电镜技术正式推广开来。


       在Klug博士提出的三维重构技术基础上,MRC实验室的Richard Henderson博士(物理学及X射线晶体学背景)跟同事Unwin 博士1975年开创了二维电子晶体学三维重构技术,随后应用该技术技术解析了第一个膜蛋白细菌视觉紫红质蛋白的三维结构,1990达到3.5埃,这是一个非常了不起的工作,但是第一个类似的膜蛋白结构的诺贝尔奖还是被X射线晶体学家米歇尔于1988年夺走了。二维晶体最大问题在于很难长出二维晶体,因而应用范围很窄,且容易被X射线晶体学家抢了饭碗(本人刚入行第一个薄三维晶体项目就被抢了)。


       上世纪90年代,Henderson博士转向了刚兴起的另一项CryoEM三维重构技术,即Joachim Frank 博士发展的单颗粒分析重构技术,无需结晶就可以对一系列蛋白或复合体颗粒直接成像,对位平均分类,然后三维重构。Henderson 博士凭借他深厚的物理学及电子显微学功底,以及非凡的洞察力,提出实现原子分辨率CryoEM技术的可行性,在理论上做了一系列超前的预见,比如电子束引起的样品漂移必须解决才能实现原子分辨率,为后期直接电子相机的突破指明了方向,他本人也投身于直接电子相机的开发。


       因此,在这场电镜分辨率的革命中,Henderson博士是个不折不扣的发起者。另外,三维重构新算法的突破也有Henderson 博士的独具慧眼有关,Sjors Scheres博士在没有很强论文情况下被他看中招募到MRC后因为开发经典的Relion 三维重构算法大放异彩。

        最后,我们再介绍一下发展冷冻电镜单颗粒三维重构技术的Joachim Frank博士,他也是物理学背景。Frank 博士是单颗粒分析鼻祖,单颗粒三维重构算法及软件Spider的作者。


       Frank 师从德国著名的电子显微学家Hoppe博士,Hoppe学派主张对任意形状样品直接三维重构,后来的电子断层三维重构及cryoEM三维重构技术都与他的早期思想有关。Frank博士提出基于各个分散的全同颗粒(蛋白)的二维投影照片,经过分类对位平均,然后三维重构获得蛋白的三维结构,发展了一系列算法并编写软件(SPIDER)实现无需结晶的蛋白质三维结构解析技术。尤其在核糖体三维重构方面有一系列的重要开创性工作,可惜当年核糖体结构诺贝尔奖没有给他。现在给他在cryoEM单颗粒三维重构的一个诺贝尔奖,实至名归。




回复 支持 反对

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-5-2 13:51 , Processed in 0.091702 second(s), 31 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表