找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 179|回复: 0
打印 上一主题 下一主题

[材料资讯] 刘天西、陈苏莉等:金属氧化物气凝胶稳定Zn金属负极

[复制链接]

76

主题

112

帖子

188

积分

注册会员

Rank: 2

积分
188
跳转到指定楼层
楼主
发表于 2023-4-28 06:00:02 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
近期,江南大学化学与材料工程学院刘天西教授团队在金属氧化物气凝胶稳定水系锌离子电池Zn金属负极方面取得突破性进展,在Advanced Energy Materials上发表重要学术论文:“Metal Oxide Aerogels: A New Horizon for Stabilizing Anodes in Rechargeable Zinc Metal Batteries(Advanced Energy Materials, 10.1002/aenm.202300331)”,第一作者为硕士研究生史振海,通讯作者为刘天西教授、陈苏莉副教授、阿卜杜拉国王科技大学Husam N. Alshareef教授和广东工业大学张文礼教授。
        水系锌离子电池由于其固有的环保、高安全和低成本等优势,在大规模储能领域具有巨大的应用潜力。Zn金属具有高理论比容量(820 mAh g-1),低氧化还原电位(-0.78 V vs SHE)和极丰富的自然储量等优点而被视为最有前途的水系锌基电池负极材料。然而,由于商业锌箔表面的不均匀性,导致Zn负极表面电场不均匀,从而使Zn2+优先沉积在尖端区——“尖端效应”,最终造成锌枝晶的猖獗生长。此外,界面副反应产生的副产物Zn4SO4(OH)6·xH2O等会严重破坏电极表面均匀性,进一步加剧枝晶生长,这将导致Zn负极不可逆的容量损失和寿命衰减,严重限制了其商业化应用。
图1.富氧空位气凝胶界面层稳定锌金属负极作用机制示意图
        基于此,本研究团队提出了采用富氧空位CeO2气凝胶(VAG-Ce)做界面层稳定Zn金属负极的新策略,利用其高Zn2+选择性和高孔隙率的特点,有效解决了枝晶生长和界面副反应问题,实现了Zn负极在高放电深度下的长循环稳定性。一方面,高孔隙率的VAG-Ce界面层作为离子筛可以为Zn2+提供快速的传输通道并均匀化界面Zn2+通量,调控Zn2+沉积行为以实现均匀的Zn沉积。另一方面,暴露在VAG-Ce表面的丰富氧空位可以有效捕获电解液中的SO42-并形成电负性界面层,随后排斥锌负极周围剩余的SO42-阴离子并吸引Zn2+,可以从根本上抑制寄生反应的发生,同时加速Zn2+迁移动力学。基于上述优势,VAG-Ce修饰的Zn负极表现出优异的循环稳定性,在1 mA cm-2下具有超过4000小时的长循环稳定性,甚至在85%的高Zn利用率下,在8 mA cm-2电流密度下依然可以稳定循环1200小时以上,实现了Zn负极在超高放电深度下的长循环稳定性。这项工作不仅为开发无枝晶和无腐蚀的高稳定性先进Zn金属负极材料提供了新视野,还将推进气凝胶材料在水系二次电池领域的应用研究。
       上述研究得到国家自然科学基金(52203261)、江苏省自然科学基金(BK20210474)等项目的资助。
       论文链接:https://doi.org/10.1002/aenm.202300331
       文章来源:江南大学
      刘天西,江南大学“至善特聘教授”,博士生导师。英国皇家化学会会士、国家杰出青年基金获得者、上海市领军人才、上海市优秀学术带头人、上海市曙光学者、上海市青年科技启明星、教育部新世纪优秀人才、德国洪堡学者。现任Composites Communications共同主编、Advanced Fiber Materials副主编、Functional Composite Materials副主编、教育部科技委交叉科学与未来技术专委会委员、中国复合材料学会·纳米复合材料分会主任、超细纤维复合材料分会副主任、导热复合材料分会副主任。主要研究方向:高分子纳米复合材料、气凝胶功能复合材料、纳米纤维及其复合材料、纳米能源复合材料及器件。在Adv. Mater.、Angew. Chem. Int. Ed.、Nat. Commun.等期刊发表SCI论文500余篇,他引2.5万余次,H因子85;2016~2018连续三年入选英国皇家化学会(RSC)材料科学“Top 1% 高被引学者”;2018年入选科睿唯安“全球高被引科学家”(材料科学);2018~2022连续五年入选爱思唯尔“中国高被引学者”(材料科学、化学工程与技术);2020年、2022年获上海市自然科学二等奖(排名第一);获授权发明专利50余项;出版中、英文专著3部。




  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖
回复

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-5-8 19:02 , Processed in 0.089867 second(s), 42 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表