找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 511|回复: 0
打印 上一主题 下一主题

[材料资讯] 郭雪峰课题组:CMOS兼容的单分子场效应晶体管研究获得重要进展

[复制链接]

110

主题

147

帖子

233

积分

中级会员

Rank: 3Rank: 3

积分
233
跳转到指定楼层
楼主
发表于 2022-3-28 16:00:01 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
纵观过去的半个多世纪,信息工业的快速发展依赖于硅基电子器件的不断微型集成。当7nm和5nm节点的芯片已经商用,3nm甚至1nm制程已经接近极限的情况下,摩尔定律似乎已经开始走向终点。因此,发展新机制、新材料和新器件已经成为半导体行业的下一个转折点。其中,利用单个分子构建电子电路元器件得到了广泛的关注,是电子器件微小化发展的终极目标。首先,单分子器件可以使得器件的导电沟道真正达到1nm左右水平,有望实现器件集成度的最大化。其次,引入功能性单分子去构建多功能的单分子器件也是未来半导体行业的重要发展趋势之一。在单分子器件的平台上引入栅极实现单分子场效应晶体管,关键的巨大挑战是如何克服长期存在的短沟道效应,如何在单分子水平上实现栅极对分子轨道能级的有效调控,从而实现高的开关比。近日,北京大学化学与分子工程学院郭雪峰课题组联合中国科学院物理研究所孟胜课题组、加拿大麦吉尔大学郭鸿课题组和法国雷恩大学Stéphane Rigaut课题组,首次在石墨烯基单分子器件的基础上构建了超薄高k的介电层,实现了栅压对单分子器件电导的有效调控,成功研制了CMOS兼容的高性能单分子场效应晶体管(图1)。
图1. 单分子场效应晶体管的结构示意图
        在前期工作中,郭雪峰课题组已经在单分子器件平台的基础上引入新型离子液体栅,研究了单分子对栅压的响应规律,构建了具有多种功能的单分子器件(Angew. Chem. Int. Ed. 2018, 57, 14026; J. Am. Chem. Soc. 2021, 143, 20811; Sci. Adv. 2022, in press)。此次他们开发了新的技术平台,在石墨烯基单分子器件的基础上首次引入了CMOS兼容的固态栅,结构上更接近传统的场效应晶体管。如图1所示,他们先沉积金属铝作为固态栅的栅极材料。金属铝表面自然氧化的氧化铝以及用溶胶凝胶法制备的氧化铪共同组成了超薄的介电层,总厚度约为10nm,一定程度上克服了短沟道效应。同时,氧化铝与氧化铪的组成避免了后续的工艺对介电层的破坏,抑制了栅极的漏电现象,在单分子水平上提高了场效应晶体管的性能。
       6年前,他们利用二芳烯分子实现了在单分子器件平台上监测光致异构引起的开关效应(Science 2016, 352, 1443)。在持续的可见光和紫外光的交替照射下,分子呈现了高低电导的交替变换。电导的变化反映出分子在不同波长的光照条件下发生了结构的变化。在此次研究中,他们与合作者设计合成了具备二芳烯光致异构官能团的钌配位化合物(Ru-DAE),其中二芳烯单元在不同波长的光照条件下也可以实现开环与关环的转换。他们将此分子引入固态栅的单分子器件,不仅重现了可逆的开关环反应,验证了单分子开关效应的可靠性,同时还发现,二芳烯开关环的两种状态在栅极电压下的电学性质存在明显差异。因此,引入二芳烯官能团,可以揭示栅压对同一分子的不同结构导电性的调控能力和机制,同时在同一器件上实现了光调控与栅调控两种手段。
        如图2所示,二芳烯在开环状态下(Ru-oDAE),分子处于弱共轭状态。零栅压下,导电性能差,实现了对关态电流的有效控制。由于HOMO的位置靠近石墨烯费米能级,在小的栅压下,分子的HOMO轨道进入导电窗口,分子的电导迅速增加。与零栅压时的电导相比,开关比可高达104。 而在关环状态下,分子处于高共轭状态。零栅压时分子的电导就已经比较高,所以栅压下分子电导的变化与开环状态相比偏小,导致开关比下降。该工作首次在石墨烯基单分子平台引入了超薄高k的固态栅,并且通过具有光响应的二芳烯官能团,研究了在同一器件上栅压对不同分子结构的调控能力,为进一步设计功能化的分子器件提供了崭新的思路和理论指导。
图 2. a.二芳烯分子开环(RU-oDAE)与关环(RU-cDAE)状态下的透射谱; b. 不同栅压下开环分子的ID-VD 特性曲线; c. 栅压下分子轨道能级的变化。
       该研究成果以“Dual-Gated Single-Molecule Field-Effect Transistors beyond Moore’s Law”为题于3月17号发表在Nature Communications上。北京大学化学与分子工程学院郭雪峰教授、中国科学院物理研究所的孟胜研究员、加拿大麦吉尔大学郭鸿教授和雷恩大学Stéphane Rigaut教授为该工作的共同通讯作者,文章的共同第一作者分别是在北京大学化学与分子工程学院合作培养的中科院物理所博士生孟利楠、郭雪峰课题组博士生辛娜、在北京大学化学与分子工程学院合作培养的南开大学博士生张苗、郭鸿课题组博士生胡晨和Stéphane Rigaut课题组博士生Hassan Al Sabea。该工作得到了来自科技部、国家自然科学基金委、北京市科委和北京大学等基金的支持。
         原文链接:https://www.nature.com/articles/s41467-022-28999-x


         文章来源:北京大学
       郭雪峰,北京大学教授,杰青,科技部重点研发计划首席科学家和 中组部“万人计划”领军人才。2001年于北京师范大学获得学士和硕士学位,2004年于中国科学院化学研究所获得博士学位。2004~2007年在哥伦比亚大学纳米中心、化学系和物理系从事博士后研究工作。2008年入职北京大学。主要从事分子材料和器件的研究,发展了制备碳基电极的稳定单分子器件的突破性方法,构建了国际首例稳定可控的单分子电子开关器件,发展了单分子电学检测新技术,开拓了单分子科学与技术研究的新领域。已发表包括2篇Science 在内的SCI论文147余篇(IF>10,57篇),引起了科学和工业界的广泛关注,《Scientific American》、《Nature》、《Science》等期刊和媒体以不同的形式亮点报道过25余次,应邀在Chem. Rev. 、Acc. Chem. Res.和Chem. Soc. Rev.等国际权威期刊上撰写邀请综述多篇,表明这些工作处于国际领先地位,是世界上能开展单分子电子学研究为数不多的几个代表性课题组之一。拥有或申请了国际国内专利14项,曾获全国百篇优秀博士论文奖、日本化学会“The Distinguished Lectureship Award”奖、中国化学会青年化学奖、教育部自然科学奖一等奖、中国高等学校十大科技进展和中国科学十大进展等奖励。作为首席科学家承担了科技部重点研发计划,主持了国家自然科学基金仪器项目、重点项目和杰青项目。








  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。

本帖被以下淘专辑推荐:

分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖1
回复

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-5-6 06:33 , Processed in 0.252685 second(s), 40 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表