找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 805|回复: 1
打印 上一主题 下一主题

[专家学者] 南京林业大学材料科学与工程学院李美春

[复制链接]

66

主题

85

帖子

110

积分

注册会员

Rank: 2

积分
110
跳转到指定楼层
楼主
发表于 2021-5-9 18:20:03 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
李美春,南京林业大学材料科学与工程学院教授、博士生导师,2019年入选江苏省特聘教授。先后在天津工业大学、韩国技术教育大学、美国路易斯安那州立大学学习工作,主要从事生物质纳米材料的提取、改性和应用研究。现主持江苏省特聘教授科研启动基金、江苏省自然科学基金青年项目、江苏省农业科技自主创新资金、南京市留学人员科技创新项目、南京林业大学标志性成果培育项目。已在Adv. Mater., ACS App. Mater. Interfaces, ACS Sustainable Chem. Eng., ACS Appl. Nano Mater., Polymer, Ind. Eng. Chem. Res.等刊物上发表研究论文50余篇,他引2000余次,3篇论文入选ESI前1%高被引用论文。

姓名: 李美春
性 别: 男
院 系: 材料科学与工程学院
任博导年月: 2019.9
毕业专业: 082902 木材科学与技术



研究方向
纳米纤维素、纳米甲壳素、木质素等生物质纳米材料的绿色提取、可控制备及功能化改性
生物质纳米材料在功能性高分子薄膜、油田勘探流体、3D打印墨水、柔性电子器件等领域的应用



成果及论文
Google Scholar:https://scholar.google.com/citations?user=ir3gOskAAAAJ&hl=en
62. MC Li, Q Wu, RJ Moon, MA Hubbe, MJ Bortner. Rheological Aspects of Cellulose Nanomaterials: Governing Parameters and Emerging Applications. Advanced Materials, 2006052, 2021.
61. X Yang, SK Biswas, J Han, S Tanpichai, MC Li, C Chen, S Zhu, AK Das, H Yano. Surface and Interface Engineering for Nanocellulosic Advanced Materials. Advanced Materials, 202002264, 2020.
60. C Liu, W Xu, C Mei, MC Li, X Xu, Q Wu. Highly Stable H2V3O8/Mxene Cathode for Zn-Ion Batteries with Superior Rate Performance and Long Lifespan. Chemical Engineering Journal, 405, 126737, 2020.
59. MC Li, Z Tang, C Liu, R Huang, MS Koo, G Zhou, Q Wu. Water-Redispersible Cellulose Nanofiber and Polyanionic Cellulose Hybrids for High-Performance Water-based Drilling Fluids. Industrial & Engineering Chemistry Research, 59, 32, 14352, 2020. (Invited Article, Highlighting the Highly Cited Authors in IECR & Featured as A Cover Article!)
58. MC Li, Q Wu, J Han, C Mei, T Lei, SY Lee, J Gwon. Overcoming Salt Contamination of Bentonite Water-based Drilling Fluids with Blended Dual-Functionalized Cellulose Nanocrystals. ACS Sustainable Chemistry & Engineering, 8, 31,11569-11578, 2020. (Featured as A Supplementary Cover Article!)
57. C Liu, MC Li, C Mei, W Xu, Q Wu. Rapid Preparation of Cellulose Nanofibers from Energy Cane Bagasse and Their Application as Stabilizer and Rheological Modifier in Magnetorheological Fluid. ACS Sustainable Chemistry & Engineering, 8, 29,10842-10851, 2020.
56. MC Li, Q Wu, T Lei, C Mei, X Xu, SY Lee, J Gwon. Thermo-Thickening Drilling Fluids Containing Bentonite and Dual-Functionalized Cellulose Nanocrystals. Energy & Fuels, 7, 8206-8215, 2020.
55. C Liu, MC Li, W Chen, R Huang, S Hong, Q Wu, C Mei. Production of lignin-containing cellulose nanofibers using deep eutectic solvents for UV-absorbing polymer reinforcement. Carbohydrate Polymers, 245, 116548, 2020.
54. Z Li, A Ramos, MC Li, Z Li, S Bhatta, A Jeyaseelan, Y Li, Q Wu, S Yao, J Xu. Improvement of cell deposition by self-absorbent capability of freeze-dried 3D-bioprinted scaffolds derived from cellulose material-alginate hydrogels. Biomedical Physics & Engineering Express, 6, 45009, 2020.
53. P Balding, MC Li, Q Wu, R Volkovinsky, PS Russo. Cellulose nanocrystal-polyelectrolyte hybrids for bentonite water-based drilling fluids. ACS Applied Bio Materials, 3, 3015-3027, 2020.
52. C Liu, MC Li, C Mei, W Chen, J Han, Y Yue, S Ren, AD French, GM Aita, G Eggleston, Q Wu. Cellulose nanofibers from rapidly microwave-delignified energy cane bagasse and their application in drilling fluids as rheology and filtration modifiers. Industrial Crops and Products, 150, 112378, 2020.
51. M Yang, MC Li, Q Wu, FB Growcock, Y Chen. Experimental study of the impact of filter cakes on the evaluation of LCMs for improved lost circulation preventive treatments. Journal of Petroleum Science and Engineering, 191, 107152, 2020.
50. X Sun, MC Li, S Ren, T Lei, SY Lee, S Lee, Q Wu. Zeolitic imidazolate framework-cellulose nanofiber hybrid membrane as Li-Ion battery separator: Basic membrane property and battery performance. Journal of Power Sources, 454, 227878, 2020.
49. J Dong, X Huang, P Muley, T Wu, M Barekati-Goudarzi, Z Tang, MC Li, S Lee, Boldor B, Wu Q. Carbonized cellulose nanofibers as dielectric heat sources for microwave annealing 3D printed PLA composite. Composites Part B: Engineering, 184, 107640, 2020.
48. T Yu, L Swientoniewski, M Omarova, MC Li, II Negulescu, N Jiang, O Darvish, A Panchal, DA Blake, Q Wu, YM Lvov, V John, D Zhang. Investigation of Amphiphilic Polypeptoid-Functionalized Halloysite Nanotubes as Emulsion Stabilizers for Oil Spill Remediation, ACS Applied Materials & Interfaces, 11, 27944-27953, 2019.
47. J Zhang, MC Li, X Zhang, S Ren, L Dong, S Lee, HN Cheng, T Lei, Q Wu. Surface modified cellulose nanocrystals for tailoring interfacial miscibility and microphase separation of polymer nanocomposites. Cellulose, 26,4301-4312, 2019.
46. J Zhang, X Zhang, MC Li, J Dong, S Lee, HN Cheng, T Lei, Q Wu. Cellulose nanocrystal driven microphase separated nanocomposites: Enhanced mechanical performance and nanostructured morphology. International Journal of Biological Macromolecules, 130, 685-694, 2019.
45. C Liu, W Chen, MC Li, S Hong, W Li, M Pan, Q Wu, C Mei. Rapid microwave activation of waste palm into hierarchical porous carbons for supercapacitors using biochars from different carbonization temperatures as catalysts. RSC Advances, 9, 19441-19449, 2019.
44. MC Li, S Ren, X Zhang, L Dong, T Lei, S Lee, and Q Wu. Surface Chemistry Tuned Cellulose Nanocrystals in Bentonite Suspension for Water-based Drilling Fluids. ACS Applied Nano Materials, 1, 7039-7051, 2018.
43. MC Li, Q Wu, K Song, AD French, C Mei, T Lei. pH-Responsive Water-Based Drilling Fluids Containing Bentonite and Chitin Nanocrystals. ACS Sustainable Chemistry & Engineering, 6, 3783–3795, 2018.
42. W Li, Z Wang, Y Wang, G Xu, MC Li, X. Sun, R. Vlosky, G. Li, Y. Lv and Q. Wu, Comparison of Thermal Decomposition Behavior of Lignocellulosic Nanomaterials from Two Biomass Sources. J. Biobased Mater. Bioenergy, 12, 441–448, 2018.
41. G Cheraghian, Q Wu, M Mostofi, MC Li, M Afrand, and JS Sangwai. Effect of a Novel Clay/silica Nanocomposite on Water-Based Drilling Fluids: Improvements in Rheological and Filtration Properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 555, 339-350, 2018.
40. L Zhou, H He, MC Li, S Huang, C Mei, and Q Wu. Grafting polycaprolactone diol onto cellulose nanocrystals via click chemistry: Enhancing thermal stability and hydrophobic property. Carbohydrate Polymers, 189, 331-341, 2018.
39. L Zhou, H He, MC Li, S Huang, C Mei, and Q Wu. Enhancing mechanical properties of poly (lactic acid) through its in-situ crosslinking with maleic anhydride-modified cellulose nanocrystals from cottonseed hulls. Industrial Crops and Products, 112, 449-459, 2018.
38. Y Zhang, X Ge, MC Li, F Deng, J Oh, and UR Cho. The properties of rice bran carbon/nitrile-butadiene rubber composites fabricated by latex compounding method. Polymer Composites, 39, E687-E696, 2018.
37. Q. Wu, C. Mei, X. Zhang, T. Lei, Z. Zhang and MC Li. “Chapter 4. Electrospun Poly(Ethylene Oxide) Fibers Reinforced with Poly (Vinylpyrrolidone) Polymer and Cellulose Nanocrystals”, in Book “Electrospinning Method Used to Create Functional Nanocomposites Films”, Publsihed by IntechOpen, 2018, pp 53-68.  (书籍章节)
36. MC Li and UR Cho. “Chapter 6. Starch in rubber based blends and micro composites” In Book “Rubber based Bionanocomposites”, Principal Editor: P. M. Visakh, Published by Springer International Publishing: Cham, 2017, pp 109-104. (书籍章节)
35. Y Cui, MC Li, Q Wu, John A. Pojman, and Daniel G. Kuroda. Synthesis-Free Phase-Selective Gelator for Oil-Spill Remediation. ACS Applied Materials & Interfaces, 9 (39), 33549–33553, 2017.
34. J Zhang, Q Wu, MC Li, K Song, SY Lee, and T Lei. Thermoresponsive Copolymer Poly(N-Vinylcaprolactam) Grafted Cellulose Nanocrystals: Synthesis, Structure, and Properties. ACS Sustainable Chemistry & Engineering, 5 (8), 7439–7447, 2017.
33. J Dong, MC Li, L Zhou, SY Lee, C Mei, X Xu, and Q Wu. The influence of grafted cellulose nanofibers and postextrusion annealing treatment on selected properties of poly(lactic acid) filaments for 3D printing. Journal of Polymer Science Part B Polymer Physics, 55(11), 847-855, 2017.
32. J Zhang, Q Wu, G Li, MC Li, X Sun, and D Ring. Synergistic influence of halogenated flame retardants and nanoclay on flame performance of high density polyethylene and wood flour composites, RSC Advances, 7, 24895-24902, 2017.
31. S Huang, L Zhou, MC Li, Q Wu and D Zhou. Cellulose Nanocrystals (CNCs) from Corn Stalk: Activation Energy Analysis. Materials, 10(1), 68, 2017.
30. S Ren, L Dong, X Zhang, T Lei, F Ehrenhauser, K Song, MC Li, X Sun and Q Wu. Electrospun Nanofibers Made of Silver Nanoparticles, Cellulose Nanocrystals, and Polyacrylonitrile as Substrates for Surface-Enhanced Raman Scattering. Materials, 10(1), 68, 2017.
29. Y Zhang, X Ge, F Deng, MC Li, and UR Cho. Fabrication and characterization of rice bran carbon/styrene butadiene rubber composites fabricated by latex compounding method. Polymer Composites, 38, 2594-2602, 2017.
28.  F Deng, MC Li, X Ge, Y Zhang, and UR Cho. Cellulose nanocrystals/poly(methyl methacrylate) nanocomposite films: Effect of preparation method and loading on the optical, thermal, mechanical, and gas barrier properties. Polymer Composites, 38, E137-E147, 2017.
27. MC Li, Q Wu, K. Song, HN Cheng, S. Suzuki, T Lei. Chitin nanofibers as reinforcing and antimicrobial agents in carboxymethyl cellulose films: influence of partial deacetylation. ACS Sustainable Chemistry & Engineering, 4, 4385-4395, 2016.
26. MC Li, C Mei, X Xu, SY Lee, Q Wu. Cationic surface modification of cellulose nanocrystals: Toward tailoring dispersion and interface in carboxymethyl cellulose films. Polymer, 107, 200-210, 2016.
25. MC Li, Q Wu, K Song, Corneils F De Hoop, SY Lee, Y Qing, Y Wu. Cellulose Nanocrystals and Polyanionic Cellulose as Additives in Bentonite Water-Based Drilling Fluids: Rheological Modeling and Filtration Mechanisms. Industrial & Engineering Chemistry Research, 55, 133-143, 2016.
24. JG Gwon, HJ Cho, SJ Chun, S Lee, Q Wu, MC Li, SY Lee. Mechanical and thermal properties of toluene diisocyanate-modified cellulose nanocrystal nanocomposites using semi-crystalline poly(lactic acid) as a base matrix. RSC Advances, 6, 73879-73886, 2016.
23. K Song, Q Wu, MC Li, Andrew K Wojtanowicz, L Dong, X Zhang, S Ren, T Lei. Performance of low solid bentonite drilling fluids modified by cellulose nanoparticles. Journal of Natural Gas Science and Engineering, 34, 1403-1411, 2016.
22. K Song, Q Wu, MC Li, S Ren, L Dong, X Zhang, T Lei, Y Kojima. Water-based bentonite drilling fluids modified by novel biopolymer for minimizing fluid loss and formation damage. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 507, 58-66, 2016.
21. S Huang, L Zhou, MC Li, Q Wu, Y Kojima, D Zhou. Preparation and properties of electrospun poly (vinyl pyrrolidone)/cellulose nanocrystal/silver nanoparticle composite fibers. Materials, 9, 523, 2016.
20. S Taheri, Y Hassani, GMM Sadeghi, F Moztarzadeh, MC Li. Graft copolymerization of acrylic acid on to styrene butadiene rubber (SBR) to improve morphology and mechanical properties of SBR/polyurethane blend. Journal of Applied Polymer Science, 29, 133, 2016.
19. L Zhou, H He, MC Li, K Song, HN Cheng, Q Wu. Morphological influence of cellulose nanoparticles (CNs) from cottonseed hulls on rheological properties of polyvinyl alcohol/CN suspensions. Carbohydrate Polymers, 153, 445-454, 2016.
18. F Deng, Y Zhang, X Ge, MC Li, XX Li, and UR Cho. Graft copolymers of microcrystalline cellulose as reinforcing agent for elastomers based on natural rubber. Journal of Applied Polymer Science, 133, 43087, 2016.
17. MC Li, Q Wu, K Song, Y Qing, and Y Wu. Cellulose Nanoparticles: Structure-Morphology-Rheology Relationships. ACS Sustainable Chemistry & Engineering, 3, 821-832, 2015.  (ESI Top 1% Highly Cited Article!)
16. MC Li, Q Wu, K Song, SY Lee, Y Qing, and Y Wu. Cellulose Nanoparticles as Modifiers for Rheology and Fluid Loss in Bentonite Water-based Fluids. ACS Applied Materials & Interfaces, 7, 5006-5016, 2015. (ESI Top 1% Highly Cited Article!)
15. MC Li, Q Wu, KSong, SY Lee, C Jin, S Ren, and T Lei. Soy Protein Isolate As Fluid Loss Additive in Bentonite–Water-Based Drilling Fluids. ACS Applied Materials & Interfaces, 7, 24799-24809, 2015.
14. F Deng, X Ge, Y Zhang, MC Li, and UR Cho. Synthesis and characterization of microcrystalline cellulose-graft-poly(methyl methacrylate) copolymers and their application as rubber reinforcements. Journal of Applied Polymer Science, 132, 42666, 2015.
13. X Ge, MC Li, XX Li, and UR Cho. Effects of silane coupling agents on the properties of bentonite/nitrile butadiene rubber nanocomposites synthesized by a novel green method. Applied Clay Science, 118, 265-275, 2015.
12. X Ge, MC Li, and UR Cho, Novel one-step synthesis of acrylonitrile butadiene rubber/bentonite nanocomposites with (3-mecaptopropyl)trimethoxysilane as a compatilizer, Polymer Composites, 36, 1693-1702, 2015.
11. MC Li, Y Zhang and UR Cho. Mechanical, Thermal and Friction Properties of Rice Bran Carbon/Nitrile Rubber Composites: Influence of Particle Size and Loading. Materials and Design, 63, 565-574, 2014.
10. MC Li and UR Cho. Effect of Coupling Agent, Methylene Diisocyanate, in the Blending of Poly (methyl methacrylate)-Modified Starch to Styrene-Butadiene Rubber. Elastomers and Composites, 49, 117-126, 2014.
9. MC Li, X Ge and UR Cho. Emulsion grafting vinyl monomers onto starch for reinforcement of styrene-butadiene rubber, Macromolecular Research, 21, 519-528, 2013.
8. MC Li, X Ge and UR Cho, Mechanical performance, water absorption behavior and biodegradability of Poly (methyl methacrylate)-modified starch/SBR biocomposites, Macromolecular Research, 21, 793-800, 2013.
7. MC Li and UR Cho. Effectiveness of coupling agents in the poly (methyl methacrylate)-modified starch/styrene-butadiene rubber interfaces, Materials Letters, 92, 132-135, 2013.
6. MC Li, JK Lee and UR Cho. Synthesis, characterization, and enzymatic degradation of starch grafted poly(methyl methacrylate) copolymer films. Journal of Applied Polymer Science, 125, 405-414, 2012.
5. MC Li, X Ge, JH Lim, MS Kim and UR Cho. Starch/SBR biocomposites prepared by solid blend method: effect of surface modification and coupling agent. Advanced Materials Research, 430-432, 1076-1080, 2012.
4. MC Li, YJ Mun and UR Cho. Synthesis of environmental-friendly starch-acrylic coating sols by emulsion polymerization. Elastomers and Composites, 45, 272-279, 2010.
3. MC Li, X Deng and UR Cho. Study on the structure, thermal properties and mechanical properties of PMMA-grafted SBR/Clay nanocomposites. Journal of Composite Materials, 44, 1279-1288, 2010.
2. X Ge, MC Li, and UR Cho, Fabrication of EPDM rubber/organo-bentonite composites: Influence of hydrochloric acid on the characteristics of modified bentonite and final products, Polymer (Korea), 38, 62-68, 2014.
1. JW Lee, MC Li, and UR Cho. A Study on Properties with Particle Size and Type of Aluninum in Pre-painted Basecoat of Automotive. Elastomers and Composites, 49, 160-166, 2014.


  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖
回复

使用道具 举报

66

主题

85

帖子

110

积分

注册会员

Rank: 2

积分
110
沙发
 楼主| 发表于 2021-5-9 18:21:31 | 只看该作者
纳米纤维素是从天然纤维(木材,棉麻,海藻等)中提取出的纳米材料,因其具有可再生、可生物降解、高比表面积、高长径比、优异力学等性能,近年来已成为全球林产品和材料学研究的热点。当纳米纤维素分散在溶剂中时,其可通过形成缠结的三维网络结构以及化学相互作用(范德瓦尔斯力、氢键、静电作用力、疏水作用力等),生成粘性流体。在剪切作用下,纳米纤维会沿着剪切方向定向排列,呈现出剪切变稀行为。移除剪切力后,其可快速重塑内部结构,在很短时间内恢复粘弹性,呈现出优异的触变性。因此,纳米纤维素流体表现出优异的流变特性,近年来在功能性流体领域中的应用受到了越来越多的关注。
图1. 来源于生物质的纳米纤维素是一种绿色、环保、高效的流变改性剂
        为此,南京林业大学李美春教授在《Advanced Materials》期刊发表了题为:RheologicalAspects of Cellulose Nanomaterials: Governing Factors and Emerging Applications的综述文章,系统总结了纳米纤维素流体的流变特性及其在3D打印、油田化学、食品等领域应用的研究进展,并对存在的挑战和工业化应用前景进行了展望。
        本综述首先介绍了纳米纤维的种类(纳米纤维素纤丝和晶体),归纳了纳米纤维素的原料和制备方法与其尺寸和表面官能团的内在联系;随后对纳米纤维素流体的絮结和溶致液晶现象、剪切取向行为、稳态剪切粘度、动态粘弹性进行了总结,具体讨论了测试方案(模具几何形状、剪切速率和恢复时间),纳米纤维素的内在特性(浓度、尺寸和表面化学),外在环境(离子浓度、酸碱度、温度、电磁场强度和聚合物相互作用力)以及后处理过程(干燥和再分散方法)对纳米纤维素流体流变性能的影响;进一步对纳米纤维素流体在3D打印、油田化学、食品、涂料和个人卫生用品等领域的研究进展进行了归纳,着重阐述了纳米纤维素的形貌、表面化学、流变特性和应用性能之间的相互联系。
         最后,作者指出纳米纤维素是一种绿色、环保、高效的流变改性剂,但是将其工业化应用还存在以下挑战:1)经济成本高,具体体现在制备、加工、运输和保存等方面;2)纳米纤维素的多样性,其尺寸、结晶度和表面化学特性受原料和制备方法影响很大;3)纳米纤维素流体的不稳定性,外在环境等对其粘度和粘弹性影响显著;4)长期使用对人体和环境影响的不确定性。基于此,作者建议:1)充分表征与调控纳米纤维素的尺寸和表面化学特性,以达到最优流变改性效果;2)使用更稳定、更均一、商业化生产的纳米纤维素来替代实验室制备的纳米纤维素进行科学研究,从而降低因纳米纤维素性质的不一致性带来的不利影响;3)规范纳米纤维素流体流变性能的测试方法;4)将纳米纤维素和水溶性聚合物共同使用,提高其可加工性和功能性;5)建立更规范的纳米纤维素安全评价和管理体制。本文第一作者兼通讯作者为南京林业大学材料学院李美春教授,共同通讯作者为美国路易斯安那州立大学QinglinWu教授。该工作得到美国农业部林务局基金,美国路易斯安那州教育厅基金、江苏特聘教授科研启动基金、江苏省农业科技自主创新资金等项目资助。

回复 支持 反对

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-5-16 02:51 , Processed in 0.101098 second(s), 42 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表