找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 777|回复: 0
打印 上一主题 下一主题

[材料资讯] 郭雪峰课题组与合作者实现了对单分子立体电子效应的精准调控

[复制链接]

204

主题

252

帖子

482

积分

中级会员

Rank: 3Rank: 3

积分
482
跳转到指定楼层
楼主
发表于 2021-5-1 08:00:01 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
单分子电子学,一方面为实现单分子尺度上器件功能的多样化提供了可能;另一方面为在分子/原子水平上探索材料的本征性能提供了平台。在单分子电子器件中,分子不同构象之间的细微差别会导致明显的电导差异,从而达到在单分子水平上捕捉单一事件的精度。通过在单分子导电通道上引入侧基官能团能够有效地调控主链分子的构象及其电学性能,这为监测单分子水平上的动力学事件奠定了基础。
近日,北京大学郭雪峰课题组和中国科学院物理研究所孟胜课题组合作,在单分子器件中通过在三联苯的侧链引入光致异构官能团—偶氮苯,基于电学测试信号研究了偶氮苯顺反式异构体对三联苯构象的影响,实现了单分子水平上的立体电子效应的精准调控(图1a)。
图 1:器件结构和分子构象示意图
        基于密度泛函理论,他们在结构优化之后计算得到:在偶氮苯处于顺反式状态下,均存在四种稳定的构象(图1b-1c)。相较于孤立的三联苯分子(相邻苯环之间夹角为±36°),两侧苯环与中心苯环的夹角各不相同。当偶氮苯处于反式时,左侧苯环与中心苯环的夹角约为±36°,而右侧苯环与中心苯环的夹角大小分两种,分别为:~−39°(c_1和c_2)和~43°(c_3和c_4)。当偶氮苯处于顺式时,左右两侧苯环与中心苯环的夹角分别约为±36°和±46°。由于顺式偶氮苯的平面结构,t_1和t_3(t_2和t_4)近乎等价。
图2:温度依赖性实验
        通过在不同温度下,实时监测偶氮苯处于顺反式状态下的电流信号,他们探索了温度对苯环扭转动力学过程的影响(图2)。当偶氮苯处于顺式时,在80 K出现了四个不同的电导态;随着温度升高,逐渐融合为两个电导态;当温度升至140 K时,仅表现为一个单一的电导态。当偶氮苯处于反式时,在80 K表现为两个不同的导电态,随温度升高融合为一个导电态;而当温度升至115 K后,出现了两个新的不同的导电态。
图3:旋转速度的理论模拟示意图
        侧链偶氮苯处于顺式和反式结构下,随着温度的上升苯环转动的动力学过程完全不同。结合理论计算发现,三联苯中远离偶氮苯的苯环(PR-L)扭转势垒几乎不受侧链结构的影响,而靠近偶氮苯的苯环(PR_R)扭转势垒(~7.0 kJ/mol)取绝于偶氮苯的异构体形态(图3a)。trans结构下由于偶氮苯几乎与三联苯共面,空间位阻大,PR_R@trans扭转势垒(~22.5 kJ/mol)大于PR_R@cis的扭转势垒(~11.7kJ/mol)。因而,在低温下可观测到trans与cis下PR_L的转动;而PR_R@cis由于相对较低的势垒也会发生转动。随着温度的升高,PR_L由于转动速度太快而率先不能被观测到。PR_R@trans由于势垒较高随着温度近一步升高时(115 K)转动才发生。而当温度达到140 K时,由于PR_R@cis势垒较低,转动速度超过仪器分辨率。与此同时,PR_R@trans依然能够被分辨(图3b和3c)。
        该工作表明引入侧链取代基能够有效地调控分子异质结中的立体电子效应,这为构建功能单分子器件以及设计有机光电子材料提供了新的思路。该研究成果以“Atomically Precise Engineering of Single-Molecule Stereoelectronic Effect”为题发表在Angew. Chem. Int. Ed.上(Angew. Chem. Int. Ed. 2021, DOI: 10.1002/anie.202100168)(very important paper)。文章的共同第一作者分别是联合培养博士生孟利楠(中国科学院物理研究所)、郭雪峰课题组的辛娜和王进莹,郭雪峰教授和中国科学院物理研究所的孟胜研究员为共同通讯作者。研究得到了国家自然科学基金委、科技部和北京分子科学国家研究中心的联合资助。
       文章链接:https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202100168


          文章来源:北京大学
       郭雪峰,北京大学教授,杰青,科技部重点研发计划首席科学家和 中组部“万人计划”领军人才。2001年于北京师范大学获得学士和硕士学位,2004年于中国科学院化学研究所获得博士学位。2004~2007年在哥伦比亚大学纳米中心、化学系和物理系从事博士后研究工作。2008年入职北京大学。主要从事分子材料和器件的研究,发展了制备碳基电极的稳定单分子器件的突破性方法,构建了国际首例稳定可控的单分子电子开关器件,发展了单分子电学检测新技术,开拓了单分子科学与技术研究的新领域。已发表包括2篇Science 在内的SCI论文147余篇(IF>10,57篇),引起了科学和工业界的广泛关注,《Scientific American》、《Nature》、《Science》等期刊和媒体以不同的形式亮点报道过25余次,应邀在Chem. Rev. 、Acc. Chem. Res.和Chem. Soc. Rev.等国际权威期刊上撰写邀请综述多篇,表明这些工作处于国际领先地位,是世界上能开展单分子电子学研究为数不多的几个代表性课题组之一。拥有或申请了国际国内专利14项,曾获全国百篇优秀博士论文奖、日本化学会“The Distinguished Lectureship Award”奖、中国化学会青年化学奖、教育部自然科学奖一等奖、中国高等学校十大科技进展和中国科学十大进展等奖励。作为首席科学家承担了科技部重点研发计划,主持了国家自然科学基金仪器项目、重点项目和杰青项目。

  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。

本帖被以下淘专辑推荐:

分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖2
回复

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-5-21 03:31 , Processed in 0.087790 second(s), 41 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表