找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 1079|回复: 0
打印 上一主题 下一主题

[材料资讯] 闻利平课题组以蚕丝纳米纤维为基础的复合膜应用于盐差能量转换获进展

[复制链接]

11

主题

20

帖子

22

积分

新手上路

Rank: 1

积分
22
跳转到指定楼层
楼主
发表于 2019-9-18 17:06:00 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
 随着能源需求的不断增长,存在于河水与海水的交界处的盐差能(也被称为蓝色能源)作为一种储量大、方便获取的能源受到了科学家们的极大关注。反向电渗析技术(RED)是一种具有广阔前景的盐差能获取方法,它是通过捕获自然水域中不同水体间的吉布斯自由能来获得持续的电能输出。RED体系中最关键的组件就是离子交换膜。通过提升膜材料的性能来获得更高的更稳定的能量捕获成为众多科研人员努力的方向。以膜为基础的纳米流体系统和纳米流体技术在纳米微环境中表现出良好的离子输运调控能力,这为获取盐差能带来了新的思路。
  在前期的理论研究基础上,为进一步提高盐差能转换电能性能,中国科学院理化技术研究所仿生材料与界面科学重点实验室研究员闻利平团队以天然的蚕丝为原料,经过多步处理获得蚕丝纳米纤维,进而组装成蚕丝纳米纤维膜。将这种带有负电荷的蚕丝膜与电荷电性可调(pH响应)的氧化铝膜进行复合组装成异质复合膜,用于盐差能的捕获。
  实验结果显示,该复合膜比单一的膜在能量转换性能上有了明显的提高,通过理论模拟展示了复合膜所具有独特的离子传输与能量捕获的优异特性。复合体系在50倍的盐度梯度下输出的能量密度达到2.86 W/m2。
  此外,实验结果表明,这种具有孔道结构、化学组成和表面电势非对称的复合膜能够有效促进离子的输运。该膜在较宽的pH值范围内具有较宽的工作环境,特别是在碱性溶液中,复合膜展现出优异的能量转换性能,这为将复合膜应用于工业废水能量提取奠定了基础。值得注意的是,得益于β折叠在蚕丝蛋白的丰富含量以及复合膜之间的氢键作用,该膜材料表现了长时间稳定性,这也为实际应用奠定了基础。
  相关工作近日以长文形式发表于《自然-通讯》(Xin, W. et al. High-performance silk-based hybrid membranes employed for osmotic energy conversion. Nat. Commun. 2019, 10, 3876-3885),文章第一作者为辛伟闻和张振,通讯作者为闻利平和孔祥玉。此外该工作也申请了国家发明专利(专利号:201811524533.4)。
复合膜优异的离子传输性能以及高的功率密度输出

离子交换膜是具有离子交换性能的、由高分子材料制成的薄膜(也有无机离子交换股,但其使用尚不普通)。它与离子交换树脂相似,都是在高分子骨架上连接一个活性基团,但作用机理和方式、效果都有不同之处。当前市场上离子交换膜种类繁多,也没有统一的分类方法。一般按膜的宏观结构分为三大类:
1. 非均相离子交换膜 由粉末状的离子交换树脂加黏合剂混炼、拉片、加网热压而成。树脂分散在黏合剂中,因而其化学结构是不均匀的。
2. 均相离子交换膜 均相离子交换膜系将活性基团引入一惰性支持物中制成。它没有异相结构,本身是均匀的。其化学结构均匀,孔隙小,膜电阻小,不易渗漏,电化学性能优良,在生产中应用广泛。但制作复杂,机械强度较低。
3. 半均相离子交换膜 也是将活性基团引入高分子支持物制成的。但两者不形成化学结合,其性能介于均相离子交换膜和非均相离子交换膜之间。
此外,离子交换膜按功能及结构的不同,可分为阳离子交换膜、阴离子交换膜、两性交换膜、镶嵌离子交换膜、聚电解质复合物膜五种类型。离子交换膜的构造和离子交换树脂相同,但为膜的形式。

闻利平,男,满族,中共党员,现任中国科学院理化技术研究所研究员,中国科学院大学未来技术学院教授,博士生导师,2016年获得国家杰出青年基金资助。近五年代表性论文如下:Angew. Chem. Int. Ed. 4篇,J. Am. Chem. Soc. 2篇和Adv. Mater. 10篇,Science Advances 1篇。指导学生多次获得奖学金,包括“国家奖学金”、“朱李月华奖学金”、“唐敖庆奖学金”等。主持或作为骨干主持多项基础或重大研究计划项目。


  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖
回复

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-5-21 06:06 , Processed in 0.087656 second(s), 42 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表