找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 621|回复: 1
打印 上一主题 下一主题

[专家学者] 西北工业大学刘小超

[复制链接]

10

主题

19

帖子

23

积分

新手上路

Rank: 1

积分
23
跳转到指定楼层
楼主
发表于 2019-4-11 09:07:26 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
姓名:刘小超
学院:材料学院
学历:博士研究生毕业
学位:工学博士
职称:副教授
职务:
学科:材料科学与工程-材料加工工程


工作经历 Work Experience
2018年11月至今     西北工业大学     材料学院      副教授


教育经历 Education Experience
2  博士  材料科学与工程             大阪大学 日本 2015.10-2018.09
2  硕士  材料科学与工程             山东大学 中国 2012.09-2015.07
2  学士  材料成型与控制工程   山东大学 中国 2008.09-2012.07
         注:本科期间,赴哈尔滨工业大学交流学习一年(2011).


招生信息 Admission Information
常年招收对焊接感兴趣的本科生。
荣誉获奖 Awards Information
Acta Student Award, Acta Journals, 2016
STWJ Best Paper Prize, Institute of Materials, Minerals and Mining (IOM3), 2016
山东省优秀硕士学位论文奖  2016
山东大学优秀硕士学位论文奖 2016


科学研究 Scientific Research
主要从事搅拌摩擦焊接工艺和机理以及与之相关的材料行为的研究。
学术成果 Academic Achievements
目前已发表同行评议论文22篇,其中SCI收录14篇(一作10篇)。另有国际会议论文4篇,专利2项。


期刊论文如下:
[1]    Liu X C, Sun Y F, Nagira T, Ushioda K, Fujii H. Strain rate dependent micro-texture evolution in friction stir welding of copper. Materialia, 2019, accept.
[2]    Liu X C, Sun Y F, Nagira T, Ushioda K, Fujii H. Evaluation of dynamic development of grain structure during friction stir welding of pure copper using a quasi in situ method. Journal of Materials Science & Technology, 2019, accept.
[3]    Liu X C, Sun Y F, Nagira T, Ushioda K, Fujii H. Experimental evaluation of strain and strain rate during rapid cooling friction stir welding of pure copper. Science and Technology of Welding and Joining, 2019, 24(4): 352-359.
[4]    Liu X C, Sun Y F, Nagira T, Ushioda K, Fujii H. Microstructure evolution of Cu-30Zn during friction stir welding. Journal of Materials Science, 2018, 53(14), pp. 10423-10441. (SCI, IF 2.993)
[5]    Liu X C, Sun Y F, Nagira T, Fujii H. Investigation of temperature dependent microstructure evolution of pure iron during friction stir welding using liquid CO2 rapid cooling. Materials Characterization, 2018, 137, 24-38. (SCI, IF 2.892)
[6]    Liu X C, Sun Y F, Morisada Y, Fujii H. Dynamics of rotational flow in friction stir welding of aluminium alloys. Journal of Materials Processing Technology, 2018, 252, 643-651. (SCI, IF 3.647)
[7]    Liu X C, Sun Y F, Fujii H. Clarification of microstructure evolution of aluminum during friction stir welding using liquid CO2 rapid cooling. Materials & Design, 2017, 129, 151-163. (SCI, IF 4.525)
[8]    Liu X C, Wu C S. Elimination of tunnel defect in ultrasonic vibration enhanced friction stir welding. Materials & Design, 2016, 90: 350-358. (SCI, IF 4.525)
[9]    Liu X C, Wu C S, Padhy G K. Characterization of plastic deformation and material flow in ultrasonic vibration enhanced friction stir welding. Scripta Materialia, 2015, 102: 95-98. (received Acta Student Award) (SCI IF 4.163)
[10] Liu X C, Wu C S. Material flow in ultrasonic vibration enhanced friction stir welding. Journal of Materials Processing Technology, 2015, 225: 32-44. (SCI, IF 3.647)
[11] Liu X C, Wu C S, Padhy G K. Improved weld macrosection, microstructure and mechanical properties of 2024Al-T4 butt joints in ultrasonic vibration enhanced friction stir welding. Science and Technology of Welding and Joining, 2015, 20(4): 345-352. (received STWJ Best Paper Prize) (SCI, IF 1.936 )
[12] Shi L, Wu C S, Liu X C. Modeling the effects of ultrasonic vibration on friction stir welding. Journal of Materials Processing Technology, 2015, 222: 91-102. (SCI, IF 3.647)
[13] Nagira T, Liu X C, Ushioda K, Fujii H, Iwamoto Y, Ano G. Role of annealing twinning in microstructural evolution of high purity silver during friction stir welding. Science and Technology of Welding and Joining, 2019, accept.
[14] Shen Z, Ding Y, Chen J, Fu L, Liu X C, H Chen, W Guo, AP Gerlich. Microstructure, static and fatigue properties of refill friction stir spot welded 7075-T6 aluminium alloy using a modified tool. Science and Technology of Welding and Joining, 2019, accept.
[15] Guo W, Fu L, He P, Lin T, Shen Z, Liu X C, Wang T, Wang C. Low-temperature brazing of alumina ceramics with bismuth-borate glass in air. Materials Characterization, 2019, 149: 158-164.
[16] Liu X C, Wu C S, Zhang H T, Chen MA. Effect of ultrasonic vibration on the friction stir weld quality of aluminium alloy. China Welding, 2013 (3): 12-17. (EI)
[17] Liu X C, Wu C S, Rethmeier M, Pittner A. Mechanical properties of 2024-T4 aluminium alloy joints in ultrasonic vibration enhanced friction stir welding. China Welding, 2013 (4): 8-13. (EI)
[18] 刘小超, 武传松. 超声振动对 6061-T4 铝合金搅拌摩擦焊接头组织和性能的影响. 焊接学报, 2014, 35(1): 49-53. (EI)
[19] 刘小超, 武传松, 钟益斌, 高嵩. 超声振动强化搅拌摩擦焊的热力行为及微观组织特征. 机械工程学报, 2015, 51(22): 22-28. (EI)
[20] 刘小超, 武传松. 外加能量辅助搅拌摩擦焊技术的研究进展. 精密成形工程, 2015, 7 (5): 13-24.
[21] 武传松, 刘小超, 高嵩. 采用辅助能量的搅拌摩擦焊新工艺. 焊接, 2015 (10): 9-17.
[22] 武传松, 刘小超. 超声振动辅助搅拌摩擦焊的研究进展. 焊接, 2013 (4): 3-8.


会议论文:
[1]    Liu X C, Fujii H. Clarification of Microstructure Evolution of Aluminum during Friction Stir Welding Using Liquid CO2 Rapid Cooling. Proc. 10th Int. Conf. on Trends in Welding Research & 9th Int. Weld. Symp. of Japan, pp.989-992, Oct. 2016.
[2]    Liu X C, Wu C S, Experimental study on ultrasonic vibration enhanced friction stir welding, Proceedings of the 1st international joint symposium on joining and welding, pp. 151-154, Nov. 2013.
[3]    Wu C S, Liu X C. Experimental investigation on the mechanism of ultrasonic vibration enhanced friction stir welding. Proc. 10th Int. Friction Stir Welding Symp., Beijing, China. 2014.
[4]    Liu X C, Wu C S. Visualization of material flow enhanced by ultrasonic energy in friction stir welding. Proceedings of Visual-JW2014 1, 65-66


专利:
[1]     武传松, 刘小超, 张皓庭 超声振动辅助搅拌摩擦焊装置, CN202726313U, 实用新型专利, 2012.
[2]     武传松, 刘小超, 张皓庭 超声振动辅助搅拌摩擦焊工艺及装置, CN102744516B, 发明专利, 2012.

  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖
回复

使用道具 举报

10

主题

19

帖子

23

积分

新手上路

Rank: 1

积分
23
沙发
 楼主| 发表于 2019-4-11 09:08:45 | 只看该作者
西北工业大学的刘小超副教授Science and Technology of Welding and Joining、Journal of Materials Science & Technology 和Acta Materialia公司旗下新刊Materialia上发表了系列最新的研究成果“Experimental evaluation of strain and strain rate during rapid cooling friction stir welding of pure copper”、“Evaluation of dynamic development of grain structure during friction stir welding of pure copper using a quasi in situ method”和“Strain rate dependent micro-texture evolution in friction stir welding of copper”。该系列论文详细介绍了刘小超副教授及其合作者在纯铜搅拌摩擦焊接过程的应变/应变速率评估、晶粒组织和织构随着应变/应变速率的动态演变等方面取得的最新研究成果。

利用Cu-40Zn双相黄铜箔片作为标记材料,研究了纯铜搅拌摩擦焊接过程中的材料流动。将材料流动假设为二维的平面流动,估算了材料流动过程中的应变和应变速率,定量表征了晶粒组织和织构随着应变和应变速率的动态演变。搅拌摩擦焊接过程中的材料流动大致可以分为5个阶段:预热阶段、加速流动阶段、高速流动阶段、减速流动阶段和冷却阶段(或退火阶段)。

文献链接:Experimental evaluation of strain and strain rate during rapid cooling friction stir welding of pure copper. Science and Technology of Welding and Joining, 2019, 24(4): 352-359.

Evaluation of dynamic development of grain structure during friction stir welding of pure copper using a quasi in situ method. Journal of Materials Science & Technology, 2019, 35(7): 412-1421.

Strain rate dependent micro-texture evolution in friction stir welding of copper. Materialia, 2019, 6: 100302.


回复 支持 反对

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-5-21 12:00 , Processed in 0.125276 second(s), 37 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表