找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 2532|回复: 7
打印 上一主题 下一主题

[课题组] 北京大学化学与分子工程学院彭海琳教授

  [复制链接]

126

主题

132

帖子

172

积分

注册会员

Rank: 2

积分
172
跳转到指定楼层
楼主
发表于 2017-3-12 17:04:29 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
彭海琳、男、1978年生、湖南湘乡人,北京大学化学与分子工程学院教授、博士生导师、国家杰出青年科学基金获得者。吉林大学学士(1996-2000年),北京大学博士(2000-2005年),美国斯坦福大学博士后(2005-2009年)。 2009年6月到北京大学工作至今。一直从事纳米材料化学与纳米器件研究,当前研究兴趣包括石墨烯与拓扑绝缘体纳米结构等二维晶体材料的制备方法、化学调制与光电器件应用基础研究。已发表SCI收录论文110余篇,影响因子超过7的论文80余篇,包括Nature子刊(11篇)、J. Am. Chem. Soc.(10篇)、Nano Lett.(21篇)、Adv. Mater.(7篇)、Phys. Rev. Lett.(1篇)、ACS Nano(9篇)、Small(7篇)、Acc. Chem. Res.(1篇)、Coord. Chem. Rev.(1篇),Nano Today (1篇),论文被他引逾6600次,单篇最高他引2500余次;申请专利15项。曾获中国分析测试协会科学技术一等奖(2005年,第二完成人),入选教育部“新世纪优秀人才支持计划”(2011年),获批国家首批优秀青年基金(2012年)、中组部首批青年拔尖人才计划(2012年)、霍英东教育基金会青年教师基金(2014年)、国家青年973项目首席科学家(2014年)、和国家杰出青年科学基金(2015年)。近5年来,在国际及双边重要学术会议上做邀请报告40余次,筹划和组织国际和双边会议6次。担任中国化学会纳米化学专业委员会委员、青年化学工作者委员会委员、北京市石墨烯科技创新专项技术咨询专家委员会专家、中国石墨烯标准化委员会委员、中关村石墨烯产业联盟专家委员会秘书长、《中国科学:化学》青年编委和《科学通报》编委。

彭海琳教授、杰青
◆ 北京大学博士(2005)
◆ 美国斯坦福大学博士后(2005-2009)
◆ 北京大学副教授 (2009-2014)
◆ 北京大学教授(2014-)
◆ 北大—宝安烯碳科技联合实验室主任(2015-)
◆ 教育部新世纪优秀人才(2011)
◆ 国家优秀青年科学基金获得者(2012)
◆ 中组部“万人计划”青年拔尖人才 (2012)
◆ 国家973计划青年项目首席科学家(2014)
◆ 国家杰出青年科学基金获得者(2015)


联系方式:
北京大学化学与分子工程学院A411室 (北京市海淀区成府路202号,邮编100871)
联系电话:010-62767984
传真:010-62757157
电子邮箱:hlpengATpku.edu.cn
Research  Gate: https://www.researchgate.net/profile/Hailin_Peng


教育经历:
1996.9-2000.7,吉林大学化学系,学士
2000.9-2005.7,北京大学 化学与分子工程学院,博士
2005.11-2009.6,美国 斯坦福大学 材料科学与工程系,博士后
2009.6-2014.7,北京大学化学与分子工程学院,副教授,博士生导师
2014.8至今, 北京大学化学与分子工程学院,教授,博士生导师


研究领域:
从事纳米材料化学与能源纳米技术研究,关注能源纳米材料的控制合成、光电器件与光(电)催化转化:
1)二维材料(石墨烯、拓扑绝缘体、二维硫族半导体)的控制生长、化学改性、异质结构与光电器件
2)高效光(电)催化转化中的新材料及其调控规律研究
3)纳米材料在柔性电子学、量子调控和能源领域应用基础研究


讲授课程:
纳米化学、结构化学小班课、物理化学实验


荣誉奖励:
2015年 国家杰出青年科学基金
2012年 中组部首批青年拔尖人才支持计划
2012年 首批国家优秀青年科学基金
2011年 教育部 新世纪优秀人才支持计划
2005年 中国分析测试协会科学技术奖(CAIA奖) 一等奖 (排名第二)
2005年 北京大学 优秀毕业生
2005年 北京大学化学学院 研究生优秀学术成果奖
2004年 北京大学纳米化学研究中心 “纳米之星”奖


学术任职:
• 中国化学会纳米化学专业委员会 委员
• 中国化学会青年化学工作者委员会 委员
• 中国石墨烯标准化委员会 委员
• 北京市石墨烯科技创新专项技术咨询专家委员会 专家
• 中关村石墨烯产业联盟专家委员会 秘书长
• 《中国科学:化学》 青年编委
• 《科学通报》 编委


学术论文:
2016
112. Han Peng, Niels B. M. Schröter, Jianbo Yin, Huan Wang, Ting-Fung Chung, Haifeng Yang, Sandy Ekahana, Zhongkai Liu, Juan Jiang, Lexian Yang, Teng Zhang, Cheng Chen, Heng Ni, Alexey Barinov, Yong P. Chen, Zhongfan Liu, Hailin Peng, Yulin Chen*. Band Structure and van Hove Singularity Evolution in Twisted Multilayer Graphene. Advanced Materials 2016, Submitted.
111. Haifeng Yang, Cheng Chen, Huan Wang, Zhongkai Liu, Teng Zhang, Han Peng, Niels Schröter, Sandy Ekahana, Juan Jiang, Lexian Yang, Viktor Kandyba, Alexei Barinov, Chaoyu Chen, José Avila, Maria Carmen Asensio, Hailin Peng*, Zhongfan Liu*, Yulin Chen*. Single Crystalline Electronic Structure and Growth Mechanism of Aligned Square Graphene Sheets. ACS Nano 2016, Submitted.
110. Zhenjun Tan, Yue Wu, Hao Hong, Jianbo Yin; Jincan Zhang; Li Lin; Mingzhan Wang; Xiao Sun, Luzhao Sun; Yucheng Huang; Kaihui Liu; Zhongfan Liu*, Hailin Peng*. Two-Dimensional (C4H9NH3)2PbBr4 Perovskite Crystals for High-Performance Photodetector. J. Am. Chem. Soc. 2016, in press.
109. Jichen Dong, Huan Wang, Hailing Peng, Zhongfan Liu, Kaili Zhang*, Feng Ding*. Formation Mechanism of Overlapping Grain Boundaries in Graphene Chemical Vapor Deposition Growth. Chemical Science 2016, in press.
108. Ke Chen, Cong Li, Liurong Shi, Teng Gao, Xiuju Song, Alicja Bachmatiuk, Zhiyu Zou, Bing Deng, Qingqing Ji, Donglin Ma, Hailin Peng, Zuliang Du, Mark Rümmeli, Yanfeng Zhang*, Zhongfan Liu*. Growing three-dimensional biomorphic graphene powders using naturally abundant diatomite templates towards high solution processability. Nature Communications 2016, 7, 13440.
107. Siyuan Zhao; Xiaojun Liu, Zheng Xu, Huaying Ren, Bing Deng, Miao Tang, Linlin Lu, Xuefeng Fu; Hailin Peng, Zhongfan Liu, Xiaojie Duan*. Graphene Encapsulated Copper Microwires as Highly MRI Compatible Neural Electrodes. Nano Letters 2016, 16,7731.
106. Xiaozhi Xu, Zhihong Zhang, Lu Qiu, Jianing Zhuang, Liang Zhang, Huan Wang, Chongnan Liao, Huading Song, Ruixi Qiao, Peng Gao, Zonghai Hu, Lei Liao, Zhimin Liao, Enge Wang, Dapeng Yu, Feng Ding*, Hailin Peng*, Kaihui Liu*. Ultrafast Growth of Large Single-crystal Graphene Assisted by Continuous Oxygen Supply. Nature Nanotechnology 2016, 11, 930.
105. Mingzhan Wang, Jinxiong Wu, Li Lin, Yujing Liu, Bing Deng, Yunfan Guo, Yuanwei Lin, Tian Xie, Wenhui Dang, Yubing Zhou, Hailin Peng*. Chemically Engineered Substrates for Patternable Growth of Two-Dimensional Chalcogenide Crystals. ACS Nano 2016, 10, 10317.
104. Huan Wang, Xiaozhi Xu, Jiayu Li, Li Lin, Luzhao Sun, Xiao Sun, Shuli Zhao,  Congwei Tan, Cheng Chen, Wenhui Dang, Huaying Ren, Jincan Zhang, Bing Deng, Ai Leen Koh, Lei Liao, Ning Kang, Yulin Chen, Hongqi Xu, Feng Ding, Kaihui Liu, Hailin Peng*, and Zhongfan Liu*. Surface monocrystallization of copper foil for fast growth of large single-crystal graphene under molecular flow. Advanced Materials 2016, 28, 8968.
103. Li Lin#, Xiang Xu#, Jianbo Yin, Jingyu Sun, Zhenjun Tan, Ai Leen Koh, Huan Wang, Hailin Peng*, Yulin Chen*, Zhongfan Liu*. Tuning chemical potential difference across alternately doped graphene p-n junctions for high-efficiency photodetection. Nano Letters 2016, 16(7), 4094.
102. Yao Guo#, Jianbo Yin#, Xianlong Wei, Zhenjun Tan, Jiapei Shu, Bo Liu, Yi Zeng, Song  Gao, Hailin Peng*, Zhongfan Liu*, Qing Chen*. Edge states induced severe disruption to the band alignment of thickness modulated molybdenum sulfide junctions. Advanced Electronic Materials 2016, 1600048.
101. J. Du, J. Y. Li, N. Kang*, Li Lin, Hailin Peng, Zhongfan Liu, H. Q. Xu*. Probe of local impurity states by bend resistance measurement in graphene cross junctions. Nanotechnology 2016, 27, 245204.
100. Zhenjun Tan#, Jianbo Yin#, Cheng Chen#, Huan Wang, Li Lin, Luzhao Sun, Jinxiong Wu, Xiao Sun, Haifeng Yang, Yulin Chen, Hailin Peng*, Zhongfan Liu*. Building Large-domain Twisted Bilayer Graphene with van Hove Singularity. ACS Nano 2016, 10(7), 6725.
99. Li Lin, Luzhao Sun, Jingyu Sun, Jincan Zhang, Ai Leen Koh, Hailin Peng*, Zhongfan Liu*. Rapid growth of large single-crystalline graphene via second passivation and multistage tailored carbon supply. Advanced Materials 2016, 28, 4671-4677.
98. Ya Huang, Suiyang Liao, Jie Ren, Bilal Khalid, Hailin Peng, Hui Wu*. A transparent, conducting tape for flexible electronics. Nano Research 2016, 9, 917.
97. Yubing Zhou, Bing Deng, Yu Zhou, Xibiao Ren, Jianbo Yin, Chuanhong Jin, Zhongfan Liu, Hailin Peng*. Low-temperature growth of two-dimensional layered chalcogenide crystals on liquid. Nano Letters 2016, 6(3), 2103.
96. Chen Zhao#, Bing Deng#, Guanchu Chen, Bo Lei, Hong Hua, Hailin Peng*, Zhimin Yan*. Large-area chemical vapor deposition-grown monolayer graphene-wrapped silver nanowires for broad-spectrum and robust antimicrobial coating. Nano Research 2016, 9, 963-973.
95. Jianbo Yin#, Huan Wang#, Han Peng#, Zhenjun Tan, Lei Liao, Li Lin, Xiao Sun, Ai Leen Koh, Yulin Chen*, Hailin Peng*, Zhongfan Liu*. Selectively enhanced photocurrent generation in twisted bilayer graphene with van Hove singularity. Nature Communications 2016, 7, 10699.
94. Li Lin#, Jiayu Li#, Huaying Ren, Ai Leen Koh, Ning Kang, Hailin Peng*, Hongqi Xu*, Zhongfan Liu*. Surface engineering of copper foils for growing centimeter-sized single crystalline graphene. ACS Nano 2016, 10(2), 2922–2929.
93. Yumei Jing, Shaoyun Huang,* Kai Zhang, Jinxiong Wu, Yunfan Guo, Hailin Peng, Zhongfan Liu, H. Q. Xu*. Weak antilocalization and electron-electron interaction in coupled multiple-channel transport in a Bi2Se3 thin film. Nanoscale 2016, 8, 1879.
2015
92. Di Wu, Alexander J. Pak, Yingnan Liu, Yu Zhou, Xiaoyu Wu, Yihan Zhu, Min Lin, Yu Han, Yuan Ren, Hailin Peng, Yu-Hao Tsai, Gyeong S. Hwang*, Keji Lai*. Thickness-Dependent Dielectric Constant of Few-Layer In2Se3 Nanoflakes. Nano Lett. 2015, 15(12), 8136–8140.
91. Li Lin, Lei Liao, Jianbo Yin, Hailin Peng*, Zhongfan Liu*. Building graphene p–n junctions for next-generation photodetection. Nano Today 2015, 10, 701-716. (Invited review)
90. Feifan Wang, Qi Li*, Li Lin, Hailin Peng, Zhongfan Liu, Dongsheng Xu*. Monodisperse Copper Chalcogenide Nanocrystals: Controllable Synthesis and the Pinning of Plasmonic Resonance Absorption. J. Am. Chem. Soc. 2015, 137(37), 12006.
89. Hailin Peng, Two-Dimensional Materials Beyond Graphene: an Emerging Field with Blooming Progress. Acta Chim. Sinica 2015, 73, 861-862.
88. Jinxiong Wu, Zhongfan Liu, Hailin Peng*. Fluorescence Quenching Effect of Rhodanmine 6G on Two-Dimensional Bi2Se3 Crystals. Acta Chim. Sinica 2015, 73 (9), 944-948.
87. Wenjing Xu, Bing Deng, Enzheng Shi, Shiting Wu, Mingchu Zou, Liusi Yang, Jinquan Wei, Hailin Peng, Anyuan Cao*. Comparison of Nanocarbon-Silicon Solar Cells with Nanotube-Si or Graphene-Si Contact. ACS applied materials & interfaces. 2015, 7 (31), 17088–17094.
86. B. N. Chandrashekar#, Bing Deng#, Smitha A S, Yubin Chen, Congwei Tan, Haixia Zhang, Hailin Peng*, Zhongfan Liu*. Roll-to-Roll Green Transfer of CVD Graphene onto Plastic for Transparent and Flexible Triboelectric Nanogenerator. Advanced Materials 2015, 27(35), 5210.
85. Lei Liao, Huan Wang, Han Peng, Jianbo Yin, Jinying Wang, Ai Leen Koh, Yulin Chen, Hailin Peng*, Zhongfan Liu*. Van Hove Singularity Enhanced Photochemical Reactivity of Twisted Bilayer Graphene. Nano Letters 2015, 15 (8), 5585–5589.
84. Yunfan Guo, Li Lin, Shuli Zhao, Bing Deng, Hongliang Chen, Bangjun Ma, Jinxiong Wu, Jianbo Yin, Zhongfan Liu*, Hailin Peng*. 2D Hybrid Nanostructured Dirac Materials for Broadband Transparent Electrodes. Advanced Materials 2015, 27, 4315–4321.
83. Xu Zhou#, Jingxin Chen#, Yubing Zhou#, Ting Cao, Hao Hong, Zhimin Liao, Shiwei Wu*, Hailin Peng*, Kaihui Liu*, Dapeng Yu. Strong Second-Harmonic Generation in Atomic Layered GaSe. J. Am. Chem. Soc. 2015, 137(25), 7994–7997.
82. Bing Deng#, Po-Chun Hsu#, Guanchu Chen, B. N. Chandrashekar, Lei Liao, Zhawulie Ayitimuda, Jinxiong Wu, Yunfan Guo, Li Lin, Yu Zhou, Mahaya Aisijiang, Qin Xie, Yi Cui*, Zhongfan Liu*, Hailin Peng*. Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes. Nano Letters 2015, 15, 4206–4213.
81. Wenshan Zheng, Tian Xie, Yu Zhou, Y. L. Chen, Wei Jiang, Shuli Zhao, Jinxiong Wu, Yumei Jing, Yue Wu, Guanchu Chen, Yunfan Guo, Jianbo Yin, Shaoyun Huang, H. Q. Xu, Zhongfan Liu, Hailin Peng*. Patterning two-dimensional chalcogenide crystals of Bi2Se3 and In2Se3 and efficient photodetectors. Nature Communications 2015, 6, 6972.
80. Chaohua Zhang, Shuli Zhao, Chuanhong Jin, Ai Leen Koh, Yu Zhou, Weigao Xu, Qiucheng Li, Qihua Xiong,Hailin Peng*, Zhongfan Liu*. Direct growth of large-area graphene and boron nitride heterostructures by a co-segregation method. Nature Communications 2015, 6, 6519.
79. Yunfan Guo, Zhongfan Liu*, Hailin Peng*. A Roadmap for Controlled Production of Topological Insulator Nanostructures and Thin films. Small 2015, 11, 3290-3305. (Invited Review)
78. Shuli Zhao, Huan Wang, Yu Zhou, Lei Liao, Ying Jiang, Xiao Yang, Guanchu Chen, Min Lin, Yong Wang,Hailin Peng*, and Zhongfan Liu*, Controlled synthesis of single-crystal SnSe nanoplates. Nano Research 2015, 8(1), 288-295.
2014
77. Yanyuan Zhao, Xin Luo, Jun Zhang, Junxiong Wu, Xuxu Bai, Meixiao Wang, Jinfeng Jia, Hailin Peng, Zhongfan Liu, Su Ying Quek, and Qihua Xiong*. Interlayer vibrational modes in few-quintuple-layer Bi2Te3 and Bi2Se3 two-dimensional crystals: Raman spectroscopy and first-principles studies. Phys. Rev. B 2014, 90, 245428.
76. Ke-Ke Bai#, Yu Zhou#, Hong Zheng, Lan Meng, Hailin Peng*, Zhongfan Liu*, Jia-Cai Nie, Lin He*. Creating One-dimensional Nanoscale Periodic Ripples in a Continuous Mosaic Graphene Monolayer. Phys. Rev. Lett. 2014, 113, 086102.
75. Lei Liao, Hailin Peng*, Zhongfan Liu*. Chemistry Makes Graphene Beyond Graphene. J. Am. Chem. Soc. 2014, 136 (35), 12194.
74. Lin Zhou, Lushan Zhou, Xi Wang, Jingwen Yu, Mingmei Yang, Jianbo Wang, Hailin Peng*& Zhongfan Liu*. Trifluoromethylation of graphene. APL Materials 2014, 2, 092505.
73. Yu Zhou†, Kai Yan†, Di Wu, Shuli Zhao, Li Lin, Li Jin, Lei Liao, Huan Wang, Qiang Fu, Xinhe Bao, Hailin Peng*, Zhongfan Liu*. Epitaxial Growth of Asymmetrically-Doped Bilayer Graphene for Photocurrent Generation. Small 2014, 10(11), 2245–2250.
72. Yubing Zhou, Yufeng Nie, Yujing Liu, Kai Yan, Jinhua Hong, Chuanhong Jin, Yu Zhou, Jianbo Yin, Zhongfan Liu*, Hailin Peng*. Epitaxy and Photoresponse of Two-dimensional GaSe Crystals on Flexible Transparent Mica Sheets. ACS Nano 2014, 8 (2), 1485–1490.
71. Weifeng Jin, Zhiwei Gao, Yu Zhou, Bin Yu, Hui Zhang, Hailin Peng, Zhongfan Liu, Lun Dai*. Novel graphene–oxide–semiconductor nanowire phototransistors. J. Mater. Chem. C, 2014, 2, 1592.
70. Chaohua Zhang, Lei Fu, Shuli Zhao, Yu Zhou, Hailin Peng*, and Zhongfan Liu*. Controllable co-segregation synthesis of wafer-scale hexagonal boron nitride thin films. Advanced Materials 2014, 26, 1776–1781.
69. Lin Zhou, Liming Zhang, Lei Liao, Mingmei Yang, Qin Xie, Hailin Peng, Zhirong Liu, Zhongfan Liu*. Photochemical Modification of Graphene. Acta Chimica Sinica. 2014, 72 (3), 289-300.
2013
68. Di Wu, Kai Yan, Yu Zhou, Huan Wang, Li Lin, Hailin Peng*, Zhongfan Liu*. Plasmon Enhanced Photothermoelectric Conversion in Chemical Vapor Deposited Graphene p-n Junctions. J. Am. Chem. Soc. 2013, 135 (30), 10926–10929.
67. Min Lin, Di Wu, Yu Zhou, Wei Huang, Wei Jiang, Wenshan Zheng, Shuli Zhao, Chuanhong Jin, Yunfan Guo, Hailin Peng*, Zhongfan Liu*. Controlled Growth of Atomically Thin In2Se3 Flakes by van der Waals Epitaxy. J. Am. Chem. Soc. 2013, 135, 13274.
66. Wenjing Yuan, Yu Zhou, Yingru Li, Chun Li, Hailin Peng, Jin Zhang, Zhongfan Liu, Liming Dai, Gaoquan Shi. The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet. Scientific Reports 2013, 3, 2248.
65. Kai Yan; Lei Fu, Hailin Peng, Zhongfan Liu. Designed CVD Growth of Graphene via Process Engineering.Accounts of Chemical Research 2013, 46(10), 2263.
64. Yunfan Guo, Mahaya • Aisijiang, Kai Zhang, Wei Jiang, Yulin Chen, Wenshan Zheng, Zehao Song, Jie Cao, Zhongfan Liu*, Hailin Peng*. Selective-area van der Waals epitaxy of topological insulator grid nanostructures for broadband transparent flexible electrodes. Advanced Materials 2013, 25, 5959–5964.
63. Liming Zhang, Jingwen Yu, Mingmei Yang, Qin Xie, Hailin Peng*, Zhongfan Liu*. Janus Graphene from Asymmetric Two-Dimensional Chemistry. Nature Communications 2013, 4, 1443.
62. Liming Zhang†, Lin Zhou†, Mingmei Yang, Zhirong Liu*, Qin Xie*, Hailin Peng*, Zhongfan Liu*. Photo-induced Free Radical Modification of Graphene. Small 2013, 9(8), 1134–1143.
61. Lin Zhou, Lushan Zhou, Mingmei Yang, Di Wu, Lei Liao, Kai Yan, Qin Xie, Zhirong Liu, Hailin Peng*, Zhongfan Liu*. Free Radical Reactions in Two Dimensions: a Case Study on Photochlorination of Graphene. Small 2013, 9(8), 1388-1396.
60. Huan Wang, Yu Zhou, Di Wu, Lei Liao, Shuli Zhao, Hailin Peng *, Zhongfan Liu*. Synthesis of Boron-doped Graphene Monolayer Using the Sole Solid Feedstock by Chemical Vapor Deposition. Small 2013, 9(8), 1316-1320.
59. Lei Liao, Zehao Song, Yu Zhou, Huan Wang, Qin Xie, Hailin Peng*, Zhongfan Liu*. Photo-induced Methylation of Graphene. Small 2013, 9(8), 1348-1352.
58. David T. Schoen, Hailin Peng, Yi Cui*. CuInSe2 Nanowires from Facile Chemical Transformation of In2Se3 and Their Integration in Single Nanowire Devices. ACS Nano 2013, 7(4), 3205.
57. S. H. Yao*, B. Zhou*, M. H. Lu*, Z. K. Liu, Y. B. Chen, J. G. Analytis, C. Brüne, W. H. Dang, S.-K. Mo, Z.-X. Shen, I. R. Fisher, L. W. Molenkamp, H. L. Peng, Z. Hussain, and Y. L. Chen. Observing electronic structures on ex-situ grown topological insulator thin films. Phys. Status Solidi RRL 2013, 7, 130–132.
56. Xiwen Yang, Hailin Peng*, Qin Xie*, Yu Zhou, Zhongfan Liu*. Clean and Efficient Transfer of CVD-grown Graghene by Electrochemical Etching of Metal Substrate. Journal of Electroanalytical Chemistry 2013, 688, 243–248.
55. Zhiwei Gao, Weifeng Jin, Yu Zhou, Yu Dai, Bin Yu, Chu Liu, Wanjin Xu, Yanping Li, Hailin Peng, Zhongfan Liu, Lun Dai*. Self-powered flexible and transparent photovoltaic detectors based on CdSe nanobelt/graphene Schottky junctions. Nanoscale 2013, 5, 5576-5581.
2012
54. Kai Yan, Di Wu, Hailin Peng*, Li Jin, Qiang Fu, Xinhe Bao, Zhongfan Liu*. Modulation-Doped Growth of Mosaic Graphene with Single-Crystalline p-n Junctions for Efficient Photocurrent Generation. Nature Communications 2012, 3, 1280 (doi: 10.1038/ncomms2286).
53. Hui Li, Jie Cao, Wenshan Zheng, Yulin Chen, Di Wu, Wenhui Dang, Kai Wang, Hailin Peng*, Zhongfan Liu*. Controlled synthesis of topological insulator nanoplate arrays on mica. J. Am. Chem. Soc. 2012, 134(14), 6132–6135. Highlight in C&EN.
52. Hailin Peng*, Wenhui Dang, Jie Cao, Yulin Chen, Di Wu, Wenshan Zheng, Hui Li, Zhi-Xun Shen, Zhongfan Liu. Topological insulator nanostructures for near-infrared transparent flexible electrodes. Nature Chemistry 2012, 4, 281–286. Highlight by Nature Chem., Nature Photon., SLAC News, PhysOrg., R&D Magazine.
51. Hui Li, Hailin Peng*, Wenhui Dang, Lili Yu, Zhongfan Liu*. Topological insulator nanostructures: materials synthesis, Raman spectroscopy, and transport properties. Frontiers of Physics 2012, 7(2), 208–217.(invited review)
50. Hui Li, Hailin Peng*, Zhongfan Liu*. Two-dimensional nanostructures and devices of topological insulator,Acta Phys. Chim. Sin. 2012, 28 (10): 2423-2435 (Feature article)
49. Song Liu, Qing Zhao*, Jun Xu, Kai Yan, Hailin Peng, Fuhua Yang, Liping You, Dapeng Yu*. Fast and controllable fabrication of suspended graphene nanopore devices. Nanotechnology 2012, 23, 085301.
2011
48. Xuelei Liang, Brent A. Sperling, Irene Calizo, Guangjun Cheng, Christina Ann Hacker, Qin Zhang, Yaw Obeng, Kai Yan, Hailin Peng, Qiliang Li, Xiaoxiao Zhu, Hui Yuan, Angela R. Hight Walker, Zhongfan Liu, Lian-mao Peng and Curt A. Richter. Toward Clean and Crackless Transfer of Graphene. ACS Nano 2011, 5 (11), 9144–9153.
47. Y.Q. Bie, Y.B Zhou, Z.M. Liao*, K.Yan, S. Liu, Q. Zhao, S. Kumar, H.-C. Wu, G. S. Duesberg, G. L. W. Cross, J. Xu, H. Peng, Z.F. Liu, D. P. Yu*. Site-Specific Transfer-Printing of Individual Graphene Microscale Patterns to Arbitrary Surfaces. Advanced Materials 2011, 23(34), 3938-3943.
46. Bo Li†, Lin Zhou†, Di Wu†, Hailin Peng†, Kai Yan, Yu Zhou, Zhongfan Liu*. Photochemical Chlorination of Graphene. ACS Nano 2011, 5(7), 5957–5961 (†equally contributed).
45. Desheng Kong, Judy J. Cha, Keji Lai, Hailin Peng, James G. Analytis, Stefan Meister, Yulin Chen, Hai-Jun Zhang, Ian R. Fisher, Zhi-Xun Shen, Yi Cui*. Rapid Surface Oxidation as a Source of Surface Degradation Factor for Bi2Se3. ACS Nano 2011, 5(6), 4698–4703.
44. Yanfeng Zhang, Teng Gao, Yabo Gao, Shubao Xie, Qingqing Ji, Kai Yan, Hailin Peng, Zhongfan Liu*. Defect-like Structures of Graphene on Copper Foils for Strain Relief Investigated by High-Resolution Scanning Tunneling Microscopy. ACS Nano 2011, 5, 4014–4022.
43. Kai Yan†, Hailin Peng†, Yu Zhou, Hui Li, Zhongfan Liu*. Formation of Bilayer Bernal Graphene: Layer-by-layer Epitaxy via Chemical Vapor Deposition. Nano Lett. 2011, 11(3), 1106–1110.  (†equally contributed)
2010
42. Wenhui Dang† , Hailin Peng†, Hui Li, Pu Wang, Zhongfan Liu. Epitaxial Heterostructures of Ultrathin Topological Insulator Nanoplate and Graphene. Nano Lett. 2010, 10 (8), 2870–2876 (†equally contributed).
41. Desheng Kong, Wenhui Dang, Judy Cha, Hui Li, Stefan Meister, Hailin Peng*, Zhongfan Liu, Yi Cui*.Few-layer Nanoplates of Bi2Se3 and Bi2Te3 with Highly Tunable Chemical Potential. Nano Lett. 2010, 10(6), 2245–2250.
40. Hailin Peng, Zhongfan Liu*. Organic Charge-Transfer Complexes for STM-Based Thermochemical Hole Burning Memory. Coordination Chemistry Reviews 2010, 254, 1151–1168. (Review)
39. Judy J. Cha, James R. Williams, Desheng Kong, Stefan Meister, Hailin Peng, Andrew J. Bestwick, Patrick Gallagher, David Goldhaber-Gordon, Yi Cui*. Magnetic Doping and Kondo Effect in Bi2Se3 Nanoribbons. Nano Lett. 2010, 10(3), 1076–1081.
38. Hailin Peng†, Keji Lai†, Desheng Kong, Stefan Meister, Yulin Chen, Xiao-Liang Qi, Shou-Cheng Zhang, Zhi-Xun Shen, Yi Cui*. Aharonov-Bohm Interference in Topological Insulator Nanoribbons. Nature Materials2010, 9(3), 225–229 (†equally contributed, Highlighted by Nat. Mater., PhysOrg, Stanford SLAC, etc).
37. Desheng Kong, Jason C. Randel, Hailin Peng, Judy J. Cha, Stefan Meister, Keji Lai, Yulin Chen, Zhi-Xun Shen, Hari C. Manoharan, Yi Cui. Topological Insulator Nanowires and Nanoribbons. Nano Lett. 2010, 10(1), 329–333.
2009
36. Yuan Yang, Chong Xie, Riccardo Ruffo, Hailin Peng, Do Kyung Kim, Yi Cui. Single Nanorod Devices for Battery Diagnostics: A Case Study on LiMn2O4. Nano Lett. 2009, 9(12), 4109–4114.
35. David T. Schoen, Hailin Peng, Yi Cui. Anisotropy of Chemical Transformation from In2Se3 to CuInSe2Nanowires through Solid State Reaction. J. Am. Chem. Soc. 2009, 131(33), 7973.
34. David T. Schoen, Stefan Meister, Hailin Peng, Candace Chan, Yuan Yang, Yi Cui. Phase transformations in one-dimensional materials: applications in electronics and energy sciences. J. Mater. Chem. 2009, 19(33), 5879–5890 (Feature paper).
33. Hailin Peng, Xiao Feng Zhang, Ray D. Twesten, Yi Cui. Vacancy Ordering and Lithium Insertion in III2VI3 Nanowires. Nano Research 2009, 2(4), 327–335.
32. K. Lai, W. Kundhikanjana, Hailin Peng, Yi Cui, M. A. Kelly, Z. X. Shen. Tapping mode microwave impedance microscopy. Rev. Sci. Instrum. 2009, 80, 043707.
31. Keji Lai†, Hailin Peng†, Worasom Kundhikanjana, David T. Schoen, Chong Xie, Stefan Meister, Yi Cui, Michael A. Kelly, Zhi-Xun Shen. Nanoscale Electronic Inhomogeneity in In2Se3 Nanoribbons Revealed by Microwave Impedance Microscopy. Nano Lett. 2009, 9(3), 1265-1269 (†equally contributed).
30. Jia Zhu, Hailin Peng, Stephen T. Connor, Yi Cui. Three-Dimensionally Interconnected Silica Nanotubes Templated from Hyperbranched Nanowires. Small 2009, 5(4), 437–439.
29. Lifeng Cui, Riccardo Ruffo, Candace K. Chan, Hailin Peng, Yi Cui. Crystalline-Amorphous Core-Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes. Nano Lett. 2009, 9(1), 491–495.
28. Hailin Peng, Candace K. Chan, Stefan Meister, Xiao Feng Zhang, Yi Cui. Shape Evolution of Layer-Structured Bismuth Oxychloride Nanostructures via Low-Temperature Chemical Vapor Transport. Chem. Mater. 2009, 21(2), 247–252.
27. A. F. Marshall, I. A. Goldthorpe, M. Koto, P. C.  McIntyre, J.  Zhu, H. L. Peng, D. M. Barnett, W. D. Nix, Y. Cui. Nanowires for Energy Applications: Fundamental Growth Studies. Microscopy and Microanalysis, 2009, 15, 144-145.
Before 2009
26. Do Kyung Kim, P. Muralidharan, Hyun-Wook Lee, Riccardo Ruffo, Yuan Yang, Candace K. Chan, Hailin Peng, Robert A. Huggins, Yi Cui. Spinel LiMn2O4 Nanorods as Li-ion Battery Cathodes. Nano Lett. 2008,8(11), 3948–3952.
25. Jin-Hong Park, M. Tada, Pawan Kapur, Jin-Hong Park Hailin Peng, Krishna C. Saraswat. Self-nucleation Free and Dimension Dependent metal-induced Lateral Crystallization of Amorphous Germanium for Single Crystalline Germanium Growth on Insulating Substrate. J. Appl. Phys. 2008, 104, 064501.
24. Jia Zhu, Hailin Peng, Ann Marshall, David M. Barnett, William D. Nix, Yi Cui. Formation of Chiral Branched Nanowires by the Eshelby Twist. Nature Nanotech. 2008, 3(8), 477–481. (Cover of the issue)
23. Hailin Peng, Chunbo Ran, Zhongfan Liu, Yunze Long, Zheming Wang, Zhengqiang Yu, Haoling Sun, Yongge Wei, Song Gao, Zhaojia Chen, Er-QiangChen. Structure, Physical Properties and Phase Transition of a Quasi-One-Dimensional Organic Semiconductor DBA(TCNQ)2. J. Phys. Chem. C 2008, 112(29), 11001–11006.
22. Yunze Long, Zhaojia Chen, Hailin Peng, Zhongfan Liu. Anisotropic electrical conductivity, phase transition and thermal hysteresis of a charge-transfer salt dibutylammonium bis-7, 7, 8, 8-tetracyanoquinodimethane DBA(TCNQ)2. Chinese Physics B, 2008, 17(6), 2251–2256.
21. Wei Zhou, Feng Lin, Liang Ren, Xiaomin Huang, Chunbo Ran, Shuai Ding, Hailin Peng, Zhongfan Liu. Thermochemical Hole Burning Performance of TCNQ-Based Charge Transfer Complexes with Different Electrical Conductivities. Nanotechnology 2008, 19(23), 235303.
20. Hailin Peng, Chong Xie, David T. Schoen, Yi Cui. Large Anisotropy of Electrical Properties in Layer-Structured In2Se3 Nanowires. Nano Lett. 2008, 8(5), 1511–1516.
19. Xiaoming Huang, Feng Lin, Wei Zhou, Liang Ren, Hailin Peng, Zhongfan Liu. Thermochemical Hole Burning on TEA(TCNQ)2 Single Crystal at Varied Temperatures in UHV System. J. Phys. Chem. C 2008,112(2), 2004–2007.
18. Candace K. Chan, Hailin Peng, Gao Liu, Kevin McIlwrath, Xiao Feng Zhang, Robert A. Huggins, Yi Cui. High-Performance Li Battery Anodes Using Silicon Nanowires. Nature Nanotech. 2008, 3(1), 31–35.
17. Hailin Peng, Chong Xie, David T. Schoen, Kevin McIlwrath, Xiao Feng Zhang, Yi Cui. Ordered Vacancy Compounds and Nanotube Formation in CuInSe2-CdS Core-Shell Nanowires. Nano Lett. 2007, 7(12), 3734–3738.
16. Yi Cui, Stefan Meister, Hailin Peng. Phase-Change Nanowires for Non-Volatile Memory. Mater. Res. Soc. Symp. Proc. 2007, 997, 299–304.
15. Jin-Hong Park, Pawan Kapur, Krishna C. Saraswat, Hailin Peng. A very low Temperature Single Crystal Germanium Growth Process on Insulating Substrate using Ni-induced Lateral Crystallization for Three-Dimensional Integrated Circuits. Appl. Phys. Lett. 2007, 91, 143107.
14. Jia Zhu, Hailin Peng, Candace K. Chan, Konrad Jarausch, Xiao Feng Zhang, Yi Cui. Hyperbranched Lead Selenide Nanowire Networks. Nano Lett. 2007, 7(4), 1095–1099.
13. Candace K. Chan, Hailin Peng, Ray D. Westin, Konrad Jarausch, Xiao Feng Zhang, Yi Cui. Fast, Completely Reversible Li Insertion in Vanadium Pentoxide Nanoribbons. Nano Lett. 2007, 7(2), 490–495.
12. Chunbo Ran, Hailin Peng, Liang Ren, Wei Zhou, Yading Ling, Zhongfan Liu. Anisotropic Thermochemical Hole Burning Phenomenon on TTF-TCNQ Single Crystal. J. Phys. Chem. C 2007, 111(2), 631–635.
11. Hailin Peng, Stefan Meister, Candace K. Chan, Xiao Feng Zhang, Yi Cui. Morphology Control of Layer-Structured Gallium Selenide Nanowires. Nano Lett. 2007, 7(1), 199–203.
10. Hailin Peng, David T. Schoen, Stefan Meister, Xiao Feng Zhang, Yi Cui. Synthesis and Phase Transformation of In2Se3 and CuInSe2 Nanowires. J. Am. Chem. Soc. 2007, 129(1), 34–35.
9. Stefan Meister, Hailin Peng, K. McIlwrath, K. Jarausch, Xiao Feng Zhang, Yi Cui. Synthesis and Characterization of Phase-Change Nanowires. Nano Lett. 2006, 6(7), 1514–1517.
8. Chunbo Ran, Hailin Peng, Wei Zhou, Xuechun Yu, Zhongfan Liu. Thermochemical Hole Burning on a Series of N-substituted Morpholinium TCNQ Charge Transfer Complexes for Data Storage. J. Phys. Chem. B 2005,109(47), 22486–22490.
7. Chun Ye, Guoqiang Xu, Zhenqiang Yu, Jacky W. Y. Lam, Jee Hwan Jang, Hailin Peng, Yingfeng Tu, Zhongfan Liu, Kwangun Jeong, Stephen Z. D. Cheng, Erqiang Chen, Benzhong Tang. Frustrated Molecular Packing in Highly Ordered Smectic Phase of Side-Chain Liquid Crystalline Polymer with Rigid Polyacetylene Backbone. J. Am. Chem. Soc. 2005, 127(21), 7668–7669.
6. Xuechun Yu, Hailin Peng, Chunbo Ran, Lei Sun, Ran Zhang, Zhongfan Liu. Scanning Tunneling Microscope-Based Thermochemical Hole Burning on a Series of Charge Transfer Complexes. Appl. Phys. Lett.2005, 86(13), 133105.
5. Hailin Peng, Zhuo Chen, Lianming Tong, Xuechun Yu, Chunbo Ran, Zhongfan Liu. Thermochemical Hole Burning on a Triethylammonium Bis-7,7,8,8-tetracyanoquinodimethane Charge-Transfer Complex Using Single-Walled Carbon Nanotube Scanning Tunneling Microscopy Tips. J. Phys. Chem. B 2005, 109(8), 3526–3530.
4. Hailin Peng, Chunbo Ran, Xuechun Yu, Ran Zhang, Zhongfan Liu. Scanning Tunneling Microscopy Based Thermochemical Hole Burning on a New Charge-Transfer Complex and Its potential for Data Storage. Adv. Mater. 2005, 17(4), 459–464.
3. Xuechun Yu, Ran Zhang, Hailin Peng, Chunbo Ran, Yingying Zhang, Zhongfan Liu. Thermochemical Hole Burning on DPA(TCNQ)2 and MEM(TCNQ)2 Charge Transfer Complexes Using a Scanning Tunneling Microscope. J. Phys. Chem. B 2004, 108(39), 14800–14803.
2. Xuechun Yu, Hailin Peng, Ran Zhang, Yingying Zhang, Zhongfan Liu. Influence of Decomposition Temperature on the Threshold Voltage for a Series of Charge Transfer Complexes. Acta Physico-Chimica Sinica 2004, 20(6), 565–568.

1. Xuechun Yu, Ran Zhang, Hailin Peng, Yingying Zhang, Zhongfan Liu. The Dependence of Threshold Voltage on Pulse Duration for DPA(TCNQ)2. Acta Physico-Chimica Sinica 2004, 20(6), 561–564.


  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖
回复

使用道具 举报

100

主题

142

帖子

274

积分

中级会员

Rank: 3Rank: 3

积分
274
沙发
发表于 2018-9-26 08:40:08 | 只看该作者

北大彭海琳教授&刘忠范院士Adv. Mater.综述:走向CVD石墨烯薄膜的规模制备

石墨烯具有高机械强度、热和电子传导能力,并且对所有气体都不渗透,因此其在高性能电子器件、保护涂层和阻隔薄膜等领域具有极大的应用前景。以可接受成本批量制备大面积、高质量石墨烯是实现石墨烯工业规模应用的先决条件,目前诸如机械剥离、液体剥离、SiC上外延生长和化学气相沉积(CVD)等方法已经被开发出来生产具有多种形状、不同尺寸的石墨烯。其中,尽管CVD方法制得的石墨烯展现出最佳的综合性能,也仍然存在晶界、点缺陷和褶皱等结构缺陷,这些问题在石墨烯规模化生产过程中愈加明显。因此,将实验室规模的研究和工业规模的石墨烯薄膜制备紧密联系起来是十分必要的。

近日,Adv. Mater. 在线刊登了北京大学彭海琳教授与刘忠范院士发表的题为“Toward Mass Production of CVD Graphene Films”的综述文章,集中阐述了基于CVD方法的石墨烯薄膜大规模生产的研究现状与未来发展方向。论文第一作者为北京大学博士研究生邓兵,通讯作者为彭海琳教授和刘忠范院士。首先简要介绍了CVD方法制备石墨烯的基本原理,然后详细分析了控制石墨烯质量的工程原理,包括制程、设备以及关键参数等,最后还讨论了石墨烯薄膜的大面积均一性和快速表征方法。此外,该综述中还指出了石墨烯规模化生产所面临的挑战。

质量控制对于石墨烯的大规模生产十分重要,为了实现未来石墨烯薄膜的实际应用,其大面积同质性和批次间重现性是必须要解决的问题。基于CVD方法在金属基底上生长的石墨烯薄膜具有优异的可扩展性和可控性。在本综述中,作者着重讨论了CVD方法规模化制备石墨烯薄膜的重要影响因素,包括制程、工业规模设备和关键参数。同时,也指出石墨烯薄膜的商业化过程是一个综合的、复杂的过程。尽管近年来,CVD法制备石墨烯薄膜得到了较为深入的科学界和工业界的研究,石墨烯的大规模生产仍处于一个初期阶段,而且,在找到石墨烯薄膜的杀手锏式应用之前,扩大石墨烯薄膜生产规模需要保持谨慎。

文献链接:Toward Mass Production of CVD Graphene Films (Adv. Mater. 2018, DOI: 10.1002/adma.201800996)


回复 支持 反对

使用道具 举报

17

主题

34

帖子

50

积分

注册会员

Rank: 2

积分
50
板凳
发表于 2018-11-6 10:48:23 | 只看该作者


回复 支持 反对

使用道具 举报

20

主题

28

帖子

32

积分

新手上路

Rank: 1

积分
32
地板
发表于 2019-4-29 17:40:19 | 只看该作者
彭海琳教授、刘忠范院士联合团队循着外延衬底制备-石墨烯外延生长这一研究思路,首先制备了4英寸CuNi(111)铜镍合金单晶薄膜,并以其为生长基底实现了4英寸石墨烯单晶晶圆的超快速制备。同时,该团队与合作者自主研发了石墨烯单晶晶圆批量制备装备,实现了单批次25片4英寸石墨烯单晶晶圆的制备,设备年产能可达1万片,在世界范围内率先实现了石墨烯单晶晶圆的可规模化制备。


衬底的特性(包括单晶性、平整度)影响石墨烯材料的生长。该联合团队以4英寸蓝宝石晶圆作为衬底,采用磁控溅射和固相外延重结晶的方法制备了500纳米厚度的CuNi(111)单晶薄膜。该方法通过界面应力工程,良好地规避了蓝宝石上外延具有面心立方晶体结构的金属单晶通常存在的孪晶问题。此外,镍的引入有效地降低铜薄膜在高温下挥发导致的台阶,使得4英寸范围内铜镍单晶薄膜具有优良的平整度。这种方法可以有效地得到具有各种成分比例的CuNi合金单晶衬底,拓展了其使用空间。
参考文献:
Bing Deng, Zhongfan Liu, Hailin Peng, et al. Scalable and ultrafastepitaxial growth of single-crystal graphene wafers for electrically tunableliquid-crystal microlens arrays. Science Bulletin, 2019.
DOI: 10.1016/j.scib.2019.04.030
https://www.sciencedirect.com/science/article/pii/S209592731930252X

回复 支持 反对

使用道具 举报

15

主题

28

帖子

30

积分

新手上路

Rank: 1

积分
30
5#
发表于 2019-10-11 09:19:40 | 只看该作者
北京大学信息科学技术学院电子学系徐洪起博雅讲席教授、黄少云副教授研究组与北京大学化学与分子工程学院彭海琳教授研究组合作,成功地以三维拓扑绝缘体Bi2Te3薄片为基材制作出单电子隧穿晶体管器件,并对器件中的库仑阻塞现象进行了精细测量研究,为进一步研究受限拓扑量子态体系中的多体物理与关联物理问题,以及制作基于三维拓扑绝缘体的量子器件奠定了实验基础。2019年9月,基于相关工作的学术论文以“基于三维拓扑绝缘体的单电子晶体管器件”(“A single-electron transistor made of a 3D topological insulator nanoplate”)为题,在线发表于《先进材料》(Advanced Materials)。第一作者为电子学系2012级博士研究生敬玉梅,徐洪起、黄少云为通讯作者。
       彭海琳研究组采用化学气相沉积(CVD)技术,经过多次优化,在云母衬底上生长出高品质的Bi2Te3纳米薄片。徐洪起-黄少云研究组通过采用当代先进的微纳加工技术,经过工艺攻关优化,制作出单电子隧穿晶体管器件,并通过低温量子输运测量,研究了电流的库仑震荡现象和电荷的稳态构型图。采用三维拓扑绝缘体建立单电子隧穿晶体管器件的关键是能够可控、有效地在具有无能隙表面态的三维拓扑绝缘体材料中定义连接受限拓扑量子点和源漏的量子隧穿结。该项研究工作首次由实验证明,这样的量子隧穿结可通过在Bi2Te3薄片上构建一定宽度的量子点接触,从而在表面态能谱中打开一个可控的能隙来实现,为在三维拓扑绝缘体材料体系中构建量子器件铺就了一条创新性的技术路线。
       上述工作主要依托固态量子器件北京市重点实验室完成,得到国家自然科学基金、国家重点研发计划“纳米科技”和“量子调控”重点专项、北京市科技计划和北京量子信息科学研究院等资助。

回复 支持 反对

使用道具 举报

119

主题

147

帖子

185

积分

注册会员

Rank: 2

积分
185
6#
发表于 2019-11-25 17:58:13 | 只看该作者
2019国际(地区)合作与交流项目        -高迁移率二维半导体/氧化物异质界面物理化学研究
批准号        21920102004       
学科分类        复合界面化学 ( B050401 )
项目负责人        彭海琳       
依托单位        北京大学
资助金额        245.00万元       
项目类别        国际(地区)合作与交流项目       
研究期限        2020 年 01 月 01 日 至2024 年 12 月 31 日

回复 支持 反对

使用道具 举报

105

主题

132

帖子

168

积分

注册会员

Rank: 2

积分
168
7#
发表于 2022-10-8 18:37:35 | 只看该作者
石墨烯等二维材料的载流子迁移率高、光-物质相互作用强、物性调控能力优,在高带宽光电子器件领域具有重要的科学价值和广阔的应用前景。当前,发展与主流半导体硅工艺兼容的二维材料集成技术受到业内广泛关注,其中首要的挑战是将二维材料从其生长基底高效转移到目标晶圆衬底上。然而,传统的高分子辅助转移技术通常会在二维材料表面引入破损、皱褶、污染及掺杂,严重影响了二维材料的光电性质和器件性能。因此,实现晶圆级二维材料的无损、平整、洁净、少掺杂转移是二维材料面向集成光电子器件应用亟待解决的关键问题。
         针对这一难题,北京大学化学与分子工程学院彭海琳课题组与国防科技大学秦石乔教授、朱梦剑副研究员课题组合作,设计了一种梯度表面能调控(gradient surface energy modulation)的复合型转移媒介,可控调节转移过程中的表界面能,保证了晶圆级超平整石墨烯向目标衬底(SiO2/Si、蓝宝石)的干法贴合与无损释放,得到了晶圆级无损、洁净、少掺杂均匀的超平整石墨烯薄膜,展示了均匀的高迁移率器件输运性质,观测到室温量子霍尔效应及分数量子霍尔效应,并构筑了4英寸晶圆级石墨烯热电子发光阵列器件,在近红外波段表现出显著的辐射热效应。该转移方法具有普适性,也适用于其它晶圆级二维材料(如氮化硼)的转移。研究成果以“Integrated wafer-scale ultra-flat graphene by gradient surface energy modulation”为题,于9月15日在线发表在《自然-通讯》(Nature Communications 2022, 13, 5410)。
         文章指出,二维薄膜材料从一表面到另一表面的转移行为主要由不同表界面间的能量差异决定。衬底的表面能越大,对二维薄膜有更好的浸润性及更强的附着能,更适合作为薄膜转移时的“接受体”;反之,衬底的表面能越小,其更适合作为薄膜转移时的“释放体”。因此,作者设计制备了表面能梯度分布的转移媒介【如图1,聚二甲基硅氧烷(PDMS)/PMMA/冰片】,其中冰片小分子层吸附在石墨烯表面,有效降低了石墨烯的表面能,保证石墨烯向目标衬底贴合过程中,衬底的表面能远大于石墨烯的表面能,进而实现良好的干法贴合;另一方面,转移媒介上层的PDMS高分子膜具备最小的表面能,能够实现石墨烯的无损释放。此外,该转移方法还有以下特点:PDMS作为支撑层可以实现石墨烯向目标衬底的干法贴合,减少界面水氧掺杂;容易挥发的冰片作为小分子缓冲层能有效避免上层PMMA高分子膜对石墨烯的直接接触和残留物污染,得到洁净的石墨烯表面;高分子PMMA层的刚性使得石墨烯转移后依旧保持超平整的特性。
图1. 晶圆级二维材料的梯度表面能调控转移方法
        基于梯度表面能调控转移的石墨烯薄膜具备无损、洁净、少掺杂、超平整等特性,展现出非常优异的物理化学性质(如图2)。转移后4英寸石墨烯晶圆的完整度高达99.8%,电学均匀性较好,4英寸范围内面电阻的标准偏差仅为6%(655 ± 39 Ω/sq)。转移到SiO2/Si衬底上石墨烯的室温载流子迁移率能够达到10,000 cm2/Vs,并且能够观测到室温量子霍尔效应以及分数量子霍尔效应(经氮化硼封装,1.7K)。基于SiO2/Si衬底上4英寸石墨烯晶圆,成功构筑了热电子发光阵列器件,在较低的电功率密度下(P = 7.7 kW/cm2)能够达到较高的石墨烯晶格温度(750K),并在近红外波段表现出显著的辐射热效应(如图3)。
图2. 梯度表面能调控转移的石墨烯晶圆。(a)无损转移到SiO2/Si衬底上高完整度4英寸石墨烯晶圆;(b)超平整石墨烯与粗糙石墨烯褶皱数目的对比(5×5 μm2范围内)及典型的原子力显微镜图片对比(内嵌图);(c)转移后4英寸石墨烯晶圆的面电阻;(d)梯度表面能调控与传统湿法转移的石墨烯的电学转移曲线对比;(e)转移到SiO2/Si上的石墨烯在不同温度下的霍尔曲线及室温量子霍尔效应;(f)转移后石墨烯(氮化硼封装,1.7 K)的朗道扇形图,表现出分数量子霍尔效应
图3. 晶圆级石墨烯热电子发光阵列器件。(a)石墨烯热电子发光示意图;(b)基于4英寸晶圆石墨烯的热电子发光阵列;(c)石墨烯热电子发光阵列的光学显微镜照片;(d)器件在电功率密度为3.0 kW/cm2时的红外照片;(e)器件在不同电功率密度下的辐射光谱;(f)石墨烯晶格温度随电功率密度的变化
        此外,梯度表面能调控转移方法可作为晶圆级二维材料(石墨烯、氮化硼、二硫化钼等)向工业晶圆转移的通用方法,有望为高性能光电子器件的集成奠定技术基础。
        该论文的共同通讯作者为彭海琳和秦石乔、朱梦剑。共同第一作者是北京大学前沿交叉学科研究院博士研究生高欣、北京大学化学学院博士毕业生郑黎明、国防科技大学前沿交叉学科学院罗芳博士、北京大学化学学院博雅博士后钱君。其他主要合作者还包括北京大学化学学院刘忠范教授、北京大学材料科学与工程学院林立特聘研究员、北京石墨烯研究院尹建波研究员和孙禄钊研究员,以及长春工业大学高光辉教授等。
         该研究工作得到了国家自然科学基金委、科技部、北京分子科学国家研究中心、腾讯基金会等项目资助,并得到了北京大学化学与分子工程学院分子材料与纳米加工实验室(MMNL)仪器平台的支持。

回复 支持 反对

使用道具 举报

204

主题

252

帖子

480

积分

中级会员

Rank: 3Rank: 3

积分
480
8#
发表于 2022-11-30 18:26:32 | 只看该作者
近日,清华大学生命科学学院王宏伟课题组、药学院饶燏课题组和北京大学化学与分子工程学院彭海琳课题组合作于Nature Communications在线发表了题为“Functionalized graphene grids with various charges for single-particle cryo-EM”的研究论文,报道了一种新型功能化石墨烯电镜载网,有助解决冷冻电镜样品制备过程中常见的优势取向和气液界面问题。
        单颗粒冷冻电镜三维重构技术是目前用于解析生物大分子高分辨率结构的主流手段之一。然而,高质量的冷冻电镜样品制备仍然面临很多挑战,如气液界面、优势取向和背景噪音等,极大地限制了结构解析的效率。针对这些问题,清华大学王宏伟课题组、饶燏课题组和北京大学彭海琳课题组合作,合成了多种带有不同荷电性质基团(如氨基和磺酸根)的重氮盐分子,并利用这些重氮盐分子对CVD生长的石墨烯膜进行功能化修饰,进而获得带有不同荷电性质的石墨烯支撑膜。他们利用石蜡作为转移介质,将石墨烯支撑膜洁净转移到电镜载网上,用以冷冻电镜样品制备。
        经过冷冻电子断层扫描重构表征,这种功能化石墨烯支撑膜保证了对目标生物大分子的有效吸附,避免了气液界面所带来的潜在风险。另外,因为石墨烯表面修饰的基团带有不同的电荷性质,从而提供了与目标生物大分子不同的相互作用方式,达到丰富取向分布的目的。单颗粒冷冻电镜数据分析表明,带有负电性修饰的石墨烯倾向性地结合生物大分子颗粒表面的正电性区域,而带有正电性修饰的石墨烯则结合生物大分子颗粒的负电性区域,实现了调控生物大分子的取向分布。乳酸乳球菌第二类内含子LtrB RNP在常规支撑膜上具有严重的优势取向问题,从而较难获得高分辨率重构。在该研究中,这种带有不同电性修饰的功能化石墨烯支撑膜能够调控LtrB RNP的取向分布,成功解决了优势取向问题,最终获得了分辨率达3.2Å的三维重构结果。并且,在三维重构过程中,相比没有修饰的普通石墨烯支撑膜,LtrB RNP在功能化石墨烯膜上的颗粒有效利用率也明显增加。这些数据表明这种功能化石墨烯支撑膜提供了一个较为友好的作用界面,有助于保护生物大分子的三维结构。

图1. 不同荷电性质基团修饰的石墨烯支撑膜电镜载网的制备


图2. 20S蛋白酶体以及核糖体在不同电性修饰的石墨烯载网(NFG:正电性修饰;SFG:负电性修饰)上的取向分布

        该研究工作以“带有多种电性修饰的石墨烯支撑膜用以单颗粒冷冻电镜结构解析”(Functionalized graphene grids with various charges for single-particle cryo-EM)为题,于2022年11月7日发表在《自然通讯》(Nature Commun. 2022, 13, 6718)。清华大学生命科学学院、结构生物学高精尖创新中心王宏伟教授及刘楠博士,清华大学药学院饶燏教授以及北京大学化学与分子工程学院彭海琳教授为本文共同通讯作者,清华大学生命科学学院博士生陆叶、博士后刘楠、药学院博士生刘永波以及北京大学化学与分子工程学院博士毕业生郑黎明为本文共同第一作者。该工作得到国家自然科学基金、国家重大科学研究计划、北京分子科学国家研究中心、北京生物结构前沿研究中心、清华-北大生命科学联合中心、中国博士后科学基金、腾讯基金会等资助,并得到了北京大学化学与分子工程学院分子材料与纳米加工实验室(MMNL)仪器平台的支持。
论文链接(Nature Commun. 2022, 13, 6718): https://www.nature.com/articles/s41467-022-34579-w

回复 支持 反对

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-5-3 10:12 , Processed in 0.133624 second(s), 38 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表