找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 647|回复: 1
打印 上一主题 下一主题

[专家学者] 深圳大学赵辰阳

[复制链接]

184

主题

215

帖子

389

积分

中级会员

Rank: 3Rank: 3

积分
389
跳转到指定楼层
楼主
发表于 2021-10-22 17:15:33 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
赵辰阳,男,博士,河南南阳人。2009年本科毕业于东华大学材料科学与工程学院,于2012年7月在复旦大学取得硕士学位,后获得全额奖学金于2012-2016年在新加坡南洋理工大学材料科学与工程学院攻读博士,毕业后从事博士后研究一年。于2017年7月作为海外高层次人才引进深圳大学。广东省珠江团队成员, 南山区领航人才。


PI:赵辰阳 (Chenyang Zhao)
Email: cyzhao@szu.edu.cn
深圳市南山区学苑大道深圳大学西丽校区化学与环境工程学院403室


Research Team & Activities:
本课题组自2017年成立以来,专注于对新能源中催化与储能方向的研究。团队目前拥有来自武汉大学、北京科技大学等优秀院校的博士后6名,以及来自中南大学、西北农林大学等优秀院校的在读硕士研究生9名。经过团队的共同努力,实验室的建设颇具规模,拥有完整的先进电化学实验测试设备。此外,在这支充满朝气的团队中,融洽的团体氛围使得科研生活更加有趣。团体每年组织两次集体出游活动,以促进团体文化建设,培养团队凝聚力。让天马行空的idea,在这里自由挥洒。


Projects:
1. 广东省自然科学基金博士启动项目(Natural science fund of Guangdong province, 2018A030310499),主持
2. 深圳大学新引进教师科研启动项目(Natural science fund of Shenzhen University, 2018034),主持
3. 深圳市孔雀计划科研启动项目(the Shenzhen Peacock Program),主持
4. 国家自然科学基金青年基金(National Natural Science Foundation of China (5190419),主持


Research Interests:
团队主要从事新能源的储存与转化研究,结合原位电化学表征(原位拉曼、XRD等)与DFT第一性原理模拟计算,主要涉及硫化物全固态电池、锂/钠离子电池、燃料电池和电催化反应等。


Selected Publications:
27. Chen, Y.; Zhao, C.*; Zhang, T.; Wu, X.*; Zhang, W.; Ding, S. Flexible and Filter-Free Color-Imaging Sensors with Multicomponent Perovskites Deposited Using Enhanced Vapor Technology. Small 2021, 2007543.
26. Zhang, X.; Li, J.; Yan, L.; Huang, S.; Zhang, P.; Peng, Z.; Zheng, L.; Zhao, C*. Ruthenium decorated 2D N-doped carbon nanocone arrays for pH-universal electrocatalytic hydrogen evolution. Applied Surface Science 2021, 559, 149978.
25. Lu, H.; Shi, W.; Zhao, F*.; Zhang, W.; Zhang, P.; Zhao, C*.; Yu, G*. High-Yield and Low-Cost Solar Water Purification via Hydrogel-Based Membrane Distillation. Adv. Funct. Mater. 2021, 2101036.
24. Gui, D.; Wei, Z.; Chen, J.; Yan, L.; Li, J.; Zhang, P.; Zhao, C*. Boosting the Sodium Storage of 1T/2H MoS2@SnO2 Heterostructure via Fast Surface Redox Reaction. J. Mater. Chem. A 2021, 9, 463-471.
23. Chen, L.; Feng, H.; Zhang, R.; Wang, S.; Zhang, X.; Wei, Z.; Zhu, Y.; Gu, M.; Zhao, C*. Phase-Controlled Synthesis of 2H/3R-MoSe2 Nanosheets on P-Doped Carbon for Synergistic Hydrogen Evolution. ACS Applied Nano Materials 2020, 3, 6516-6523.
22. Chen, L.; Zhu, Y.; Li, J.; Feng, H.; Li, T.; Zhang, X.; Wang, S.; Gu, M.; Zhang, P.; Zhao, C*. Phase Modulation and Chemical Activation of MoSe2 by Phosphorus for Electrocatalytic Hydrogen Evolution Reaction. Energy Technology 2020, 1901503.
21. Zhao, C.; Wang, R.; Zhang, Y.; Chen, L.; Li, T.; Deng, X.; Zhang, P.; Lu, X*. Electrostatic force-driven anchoring of Ni(OH)2 nanocrystallites on single-layer MoS2 for high-performance asymmetric hybrid supercapacitors. Electrochimica Acta 2019, 320, 134591.
20. Zhang, Y.; Zhao, C.*; Ong, W. K.; Lu, X*. Ultrafast-Freezing-Assisted Mild Preparation of Biomass-Derived Hierarchically Porous Activated Carbon Aerogels for High-Performance Supercapacitors. ACS Sustainable Chem. Eng. 2019, 7, 403-411.
19. Jiang, H.; Hu, P.; He, X.; Ng, M.-F.; Ye, J.; Zhao, C.; Wang, S.; Tan, K.; Chaturvedi, A.; Kloc, C.; Hu, W.; Long, Y. Trisulfide Bonds Acenes for Organic Battery. Angewandte Chemie International Edition 2019, 131, 13647-13655.
18. Zhao, C.; Zhang, Y.; Chen, L.; Yan, C.; Zhang, P.; Ang, J. M.; Lu, X. Self-Assembly-Assisted Facile Synthesis of MoS2-Based Hybrid Tubular Nanostructures for Efficient Bifunctional Electrocatalysis. ACS Appl. Mater. Interfaces 2018, 10, 23731-23739.
17. Zhang, Y.; Zhao, C.; Zeng, Z.; Ang, J. M.; Che, B.; Wang, Z.; Lu, X. Graphene nanoscroll/nanosheet aerogels with confined SnS2 nanosheets: simultaneous wrapping and bridging for high-performance lithium-ion battery anodes. Electrochimi. Acta 2018, 278, 156-164.
16. Ang, J. M.; Li, B.; Xi, S.; Du, Y.; Zhao, C.; Kong, J.; Zong, Y.; Ludger, P.; Lu, X. Mussel-Inspired Facile Synthesis of Fe/Co-Polydopamine Complex Nanospheres: Complexation Mechanism and Application of the Carbonized Hybrid Nanospheres as an Efficient Bifunctional Electrocatalyst. New Journal of Chemistry 2018, 42, 19494-19504.
15. Zhao, C.; Ang, J. M.; Liu, Z.; Lu, X. Alternately stacked metallic 1T-MoS2/polyaniline heterostructure for high-performance supercapacitors. Chem. Eng. J. 2017, 330, 462-469.
14. Zeng, Z.; Seyed Shahabadi, S. I.; Che, B.; Zhang, Y.; Zhao, C.; Lu, X. Highly stretchable, sensitive strain sensors with a wide linear sensing region based on compressed anisotropic graphene foam/polymer nanocomposites. Nanoscale 2017, 9, 17396-17404.
13. Zhao, C.; Wang, X.; Kong, J.; Ang, J. M.; Lee, P. S.; Liu, Z.; Lu, X. Self-Assembly-Induced Alternately Stacked Single-Layer MoS2 and N-doped Graphene: A Novel van der Waals Heterostructure for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2016, 8, 2372-2379.
12. Liu, W.#; Zhao, C.#; Zhou, R.; Zhou, D.; Liu, Z.; Lu, X. Lignin-assisted exfoliation of molybdenum disulfide in aqueous media and its application in lithium ion batteries. Nanoscale 2015, 7, 9919-9926. (co-first author)
11. Kong, J.; Zhao, C.; Wei, Y.; Lu, X. MoS2 Nanosheets Hosted in Polydopamine-Derived Mesoporous Carbon Nanofibers as Lithium-Ion Battery Anodes: Enhanced MoS2 Capacity Utilization and Underlying Mechanism. ACS Appl. Mater. Interfaces 2015, 7, 24279-24287.
10. Dong, Y.; Kong, J.; Mu, C.; Zhao, C.; Thomas, N. L.; Lu, X. Materials design towards sport textiles with low-friction and moisture-wicking dual functions. Materials & Design 2015, 88, 82-87.
9. Zhao, C.; Kong, J.; Yao, X.; Tang, X.; Dong, Y.; Phua, S. L.; Lu, X. Thin MoS2 Nanoflakes Encapsulated in Carbon Nanofibers as High-Performance Anodes for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2014, 6, 6392-6398.
8. Zhao, C.; Kong, J.; Yang, L.; Yao, X.; Phua, S. L.; Lu, X. The dopamine-MoVI complexation-assisted large-scale aqueous synthesis of a single-layer MoS2/carbon sandwich structure for ultrafast, long-life lithium-ion batteries. Chem. Commun. 2014, 50, 9672-9675.
7. Yao, X.; Zhao, C.; Kong, J.; Wu, H.; Zhou, D.; Lu, X. Dopamine-assisted one-pot synthesis of zinc ferrite-embedded porous carbon nanospheres for ultrafast and stable lithium ion batteries. Chem. Commun. 2014, 14597-14600.
6. Yao, X.; Kong, J.; Zhou, D.; Zhao, C.; Zhou, R.; Lu, X. Mesoporous zinc ferrite/graphene composites: Towards ultra-fast and stable anode for lithium-ion batteries. Carbon 2014, 79, 493-499.
5. Yao, X.; Kong, J.; Zhao, C.; Zhou, D.; Zhou, R.; Lu, X. Zinc ferrite nanorods coated with polydopamine-derived carbon for high-rate lithium ion batteries. Electrochim. Acta 2014, 146, 464-471.
4. Tang, X.; Yao, X.; Chen, Y.; Song, B.; Zhou, D.; Kong, J.; Zhao, C.; Lu, X. CuInZnS-decorated graphene as a high-rate durable anode for lithium-ion batteries. J. Power Sources 2014, 257, 90-95.
3. Kong, J.#; Zhao, C.#; Wei, Y.; Phua, S. L.; Dong, Y.; Lu, X. Nanocups-on-microtubes: a unique host towards high-performance lithium ion batteries. J. Mater. Chem. A 2014, 2, 15191-15199. (co-first author)
2. Kong, J.; Wei, Y.; Zhao, C.; Toh, M. Y.; Yee, W. A.; Zhou, D.; Phua, S. L.; Dong, Y.; Lu, X. Growth of rutile TiO2 on the convex surface of nanocylinders: from nanoneedles to nanorods and their electrochemical properties. Nanoscale 2014, 6, 4352-4360.
1. Dong, Y.; Kong, J.; Phua, S. L.; Zhao, C.; Thomas, N. L.; Lu, X. Tailoring Surface Hydrophilicity of Porous Electrospun Nanofibers to Enhance Capillary and Push–Pull Effects for Moisture Wicking. ACS Appl. Mater. Interfaces 2014, 6, 14087-14095.





  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖
回复

使用道具 举报

184

主题

215

帖子

389

积分

中级会员

Rank: 3Rank: 3

积分
389
沙发
 楼主| 发表于 2021-10-22 17:16:55 | 只看该作者
近日,深圳大学化学与环境工程学院赵辰阳副研究员团队在期刊《Journal of Materials Chemistry A》(影响因子12.732,中科院JCR1区,TOP期刊)上发表了题为《Boosting the water dissociation kinetics via charge redistribution of ruthenium decorated on S, Ncodoped carbon》的研究论文。深圳大学为第一通信单位。
        氢作为一种新型能源,因其对环境友好且能量密度高,具有替代不可再生化石燃料的巨大潜力。近年来,电催化制氢反应HER因其具有安全性和可持续性,引起人们越来越多的关注。与酸性介质中的HER不同,碱性介质中的HER涉及到两个步骤,即水解离产生质子,然后再结合质子形成H2。第一步的高能势垒导致反应缓慢,从而限制了HER的整个反应速率。因此,目前被广泛研究的催化剂在碱性介质中往往性能较差,包括铂基贵金属。
钌 (Ru) 是一种相对经济的铂基催化剂替代品,价格仅约为铂的1/3,因此,它们被认为是HER催化剂的非常具有潜力的替代品。通过构建强金属-载体相互作用,可以改变表面能、键隙、电荷分布和轨道性质,从而提高电催化活性。基于此,该团队报道了一种由共聚物模板策略合成的Ru修饰S, N共掺杂碳 (Ru-SNC) 催化剂,并探究了其碱性HER性能。通过同步辐射和理论计算揭示了Ru-SNC的高活性,结果显示Ru通过形成Ru-N/S键重构了表面的电荷分布,从而优化了Ru-H*相互作用,并大大降低了水离解的能垒。
(a) LSV 曲线,(b) Tafel斜率曲线,1.0 M KOH 电解液。(c) 在10 mA cm-2时稳定性测试。(d) 5000 CV循环前后的LSV 曲线。(e) TOF值。 (f) CO-剥离曲线。
        如图所示,通过对催化剂在1.0 M KOH电解液中HER活性进行测试,结果发现:Ru-SNC催化剂中Ru的含量为2.59 wt%时,仅需14 mV过电位便能达到10 mA cm-2的电流密度, Tafel斜率为44 mV dec-1,并且催化剂还具有优异的稳定性。此外,其在25 mV时的产氢率是商业Pt/C的15.6倍,为目前报道的活性较高的碱性HER电催化剂之一。综合实验结果和计算结果证明了,Ru与S、N杂原子之间的协同效应是HER活性较高的主要原因。
       原文连接:https://pubs.rsc.org/en/content/articlelanding/2021/ta/d1ta04917h

回复 支持 反对

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-5-16 07:21 , Processed in 0.090199 second(s), 37 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表