找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 4211|回复: 5
打印 上一主题 下一主题

[专家学者] 苏州大学黄小青

[复制链接]

61

主题

94

帖子

139

积分

注册会员

Rank: 2

积分
139
跳转到指定楼层
楼主
发表于 2018-9-21 08:54:00 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
黄小青苏州大学教授,男,1984年生,2011年在厦门大学获得博士学位。同年底,前往美国加州大学洛杉矶分校开展博士后研究工作,合作导师为黄昱教授和段镶锋教授。2014年6月黄小青正式入职苏州大学,现为苏州大学材化部化学学院特聘教授。黄小青教授先后入选中组部第十批“青年##计划”和苏州工业园区第五届“金鸡湖双百人才计划”。近年来,以第一作者身份在Science,Nat. Nanotechnol., J. Am. Chem. Soc., Angew. Chem. Int. Ed., Adv. Mater., Nano Lett., Energy Environ. Sci., Adv. Funct. Mater., Small等国际权威期刊发表研究论文近30篇,研究成果被Nature Daily、Nature China等国内外期刊媒体广泛报道。


姓名:黄小青
职称:教授、博士生导师
部门:化学学院
联系方式:
Email: hxq006@suda.edu.cn

人物经历

2005年6月,毕业于西南师范大学(现在西南大学)化学化工学院,获学士学位。
2011年9月,毕业于厦门大学化学化工学院,获博士学位,导师为郑南峰和郑兰荪教授。
2011年9月至2014年6月,美国加州大学洛杉矶分校材料科学与工程系博士后,导师为材料科学家黄昱和段镶锋教授。
2014年,受聘于苏州大学材化部,特聘教授,博士生导师。



通讯作者代表性论文:
2019

1. Y. G. Feng,# W. W. Xu,# ….., and, X. Q. Huang*, “On-demand, hydrogenation system……” Science Advances 2019……;

2.  Y. Zhang,# ……L. K. Xiong, M. Z. Sun, Y. Peng, X. Q. Huang*, “Engineering of Nanowires Enables……” Joule ……;

3. J. Yang, Q. Shao, B. L. Huang,* M. Z. Sun, X. Q. Huang*, “pH-Universal Water Splitting Catalyst by Ru-Ni Nanosheet Assemblies” iScience2019, 11, 492-504;

4. H. P. Wang, J. Wang, Y. C. Pi, Q. Shao, Y. M. Tan, X. Q. Huang*, “Double Perovskite LaFexNi1-xO3 Nanorods Enable Efficient Oxygen Evolution Electrocatalysis” Angew. Chem. Int. Ed. 2019, 58, 2316 ;

5. J. Zhang, R. Yin, Q. Shao, T. Zhu, X. Q. Huang*, “Amorphous nanoribands for reinforced CO2 electroreduction……” Angew. Chem. Int. Ed. 2019……;

6. N. Zhang,# Q. Shao,# X. H. Xiao, X. Q. Huang*, “Advanced catalysts derived from composition-segregated Platinum-Nickel nanostructures: new opportunities and challenges” Adv. Funct. Mater. 2019, 29(3), 1808161;

7. Q. Shao,# P. T. Wang,#X. Q. Huang*, “Opportunities and challenges of interface engineering in bimetallic nanostructure for enhanced electrocatalysis” Adv. Funct. Mater. 2019, 29 (3), 1806419;

8. C.Y. Tang#, N. Zhang#, Y. J. Ji#, Q. Shao, Y. Y. Li*, X. H. Xiao, X. Q. Huang*, “Fully tensile strained Pd3Pb/Pd tetragonal nanosheets enhance oxygen reduction catalysis” Nano Lett. 2019, 19 , 1336-1342;

9. H. P. Wang=, S. X. Bai=, Y. C. Pi, Q. Shao, Y. M. Tan, X. Q. Huang*, “A Strongly Coupled Ultrasmall Pt3Co Nanoparticle-Ultrathin Co(OH)2 Nanosheet Architecture Enhances Selective Hydrogenation of α,β-Unsaturated Aldehydes” ACS Catalysis 2019, 9 (1), 154-159;

10. X. L. Luo, Q. Shao,* Y. C. Pi, X. Q. Huang*, “Trimetallic Molybdate Nanobelts as Active and Stable Electrocatalysts for Oxygen Evolution Reaction” ACS Catalysis 2019, 9 (2), 1013-1018;

11. M. W. Zhu, Q. Shao, Y. Qian, X. Q. Huang*, “Superior Overall Water Splitting Electrocatalysis in Acidic Conditions Enabled by Bimetallic Ir-Ag Nanotubes” Nano Energy 2019, 56, 330-337;

12. J. Wang, Y. J. Ji, Q. Shao, R, G. Yin, J. Guo, Y. Y. Li,*X. Q. Huang*, “Phase and Structure Modulating of Bimetallic CuSn Nanowires Boosts Electrocatalytic Conversion of CO2” Nano Energy 2019, NANOEN-D-19-00131R1;

13. Y. G. Feng, C. Y. Yang, W. Fang, B. L. Huang,* Q. Shao, X. Q. Huang*, “Anti-Poisoned Oxygen Reduction by the Interface Modulated Pd@NiO Core@Shell” Nano Energy 2019, 58, 234-243;

14. Y. G. Feng, Q. Shao, F. Lv, L. Z. Bu, J. Guo, S. J. Guo,* X. Q. Huang*, “Intermetallic PtBi Nanoplates Boost Oxygen Reduction Catalysis with Superior Tolerance over Chemical Fuels” Adv. Sci.2019, In Press;

15. B. E=, B. L. Huang=, N. Zhang, Q. Shao,Y. J. Li, X. Q. Huang*, “Enhancing Catalytic H2 Generation by Surface Electronic Tuning of Systematically Controlled Pt-Pb Nanocrystals” Nano Research2019, DOI: 10.1007/s12274-019-2305-z;

16. L. Z. Bu, Q. Shao, X. Q. Huang*, “Highly Porous Pt-Pb Nanostructures as Active and Ultrastable Catalysts for Polyhydric Alcohol Electrooxidations” Science China Materials2019, 62 (3), 341-350;

17. B. E, L. Z Bu, Q. Shao, Y. J. Li, X. Q. Huang*, “Efficient Catalytic Hydrogen Generation by Intermetallic Platimun-Lead Nanostructures with Highly Tunable Porous Feature” Science Bulletin2019, 64 (1), 36-43;

2018

18. Y. G. Feng,# Q. Shao,# Y. J. Ji,# X. N. Cui, Y. Y. Li,* X. Zhu, X. Q. Huang*, “Surface Modulated Palladium-Nickel Icosahedra as High-Performance Non-Platinum Oxygen Reduction Electrocatalysts” Science Advances 2018, 4 (7), eaap8817;

19. P. T. Wang=, M. Qiao=, Q. Shao, Y. C. Pi, X. Zhu, Y. Li, X. Q. Huang*, “Phase and Structure Engineering of CuSn Heterostructures for Efficient Electrochemical CO2 Reduction” Nat. Commun. 2018, 9, 4933;

20. P. T. Wang=, Q. Shao=, X. Q. Huang*, “Updating Pt-Based Electrocatalysts for Practical Fuel Cells” Joule 2018, 2(12), 2514-2516;

21. L. Z. Bu, Q. Shao, Y. C. Pi, J. L. Yao, M. C. Luo, J. P. Lang, S. Hwang, H. Xin, B. L. Huang,* J. Guo, D. Su,* S. J. Guo, * X. Q. Huang*, “Coupled s-p-d Exchange in Facet-Controlled Pd3Pb Tripods Enhances Oxygen Reduction Catalysis” Chem.2018, 4 (2), 359-371;

22. S. X. Bai, L. Z. Bu, Q. Shao, X. Zhu, X. Q. Huang*, “Multicomponent Pt-based Zigzag Nanowires as Selectivity Controllers for Selective Hydrogenation Reactions” JACS 2018, 140 (27), 8384-8387;

23. F. L. Li, Q. Shao, X. Q. Huang*, J. P. Lang*, “Nanoscale Trimetallic Metal-Organic Frameworks Enable Efficient Oxygen Evolution Electrocatalysis” Angew. Chem. Int. Ed. 2018, 57 (7), 1888-1892;

24. J. Yang#, Y. Y. Ji, Q. Shao, N. Zhang, Y. Y. Li, X. Q. Huang*, “A Universal Strategy to Metal Wavy Nanowires for Efficient Electrochemical Water Splitting at pH-Universal Conditions” Adv. Funct. Mater. 2018, 28 (41), 1803722;

25. P. T. Wang,# Q. Shao,# X. N. Cui, X. Zhu, X. Q. Huang*, “Hydroxide Membranes Coated Pt3Ni Nanowires as Highly Efficient Catalysts for Selective Hydrogenation Reaction” Adv. Funct. Mater. 2018, 28 (5), 1705918;

26. B. E, Q. Shao, L. Z. Bu, S. X. Bu, Y. J. Li, X. Q. Huang*, “Ordered PtPb/Pt Core/Shell Nanodisks as Highly Active, Selective and Stable Catalysts for Methanol Reformation to H2” Adv. Energy Mater. 2018, 8 (16), 1703430;

27. Y. C. Pi#, Q. Shao#, X. Zhu, X. Q. Huang*, “Dynamic Structure Evolution of Composition Segregated Iridium-Nickel Rhombic Dodecahedra towards Efficient Oxygen Evolution Electrocatalysis at Variable pH Conditions” ACS Nano 2018, 12 (7), 7371-7379;

28. Q. Shao#, Y. Wang#, S. Z. Yang#, K. Y. Lu, Y. Zhang, C. Y. Tang, J. Song, Y. G. Feng, L. K. Xiong, Y. Peng, Y. F. Li*, H. L. Xin, X. Q. Huang*, “Stabilizing and Activating Metastable Nickel Nanocrystals for Highly Efficient Hydrogen Evolution Electrocatalysis” ACS Nano 2018, 12 (11) 11625-11631;

29. D. D. Zhao, Y. C. Pi, Q. Shao*, Y. G. Feng, Y. Zhang, X. Q. Huang*, “Enhancing Oxygen Evolution Electrocatalysis via the Intimate Hydroxide-Oxide Interface” ACS Nano 2018, 12 (6), 6245-6251;

30. L. Z. Bu, C. Y. Tang, Q. Shao, X. Zhu, X. Q. Huang*, “Three-Dimensional Pd3Pb Nanosheet Assemblies: High-Performance Non-Pt Electrocatalysts for Bifunctional Fuel Cell Reactions” ACS Catalysis 2018, 8 (5), 4569-4575;

31. F. M. Li, Q. Shao, M. C. Hu, Y. Chen,* X. Q. Huang*, “Hollow Pd-Sn Nanocrystals for Efficient Direct H2O2 Synthesis: The Critical Role of Sn on Structure Evolution and Catalytic Performance” ACS Catalysis 2018, 8 (4), 3418-3423;

32. J. B. Ding, Q. Shao, Y. G. Feng, X. Q. Huang*, “Ruthenium-Nickel Sandwiched Nanoplates for Efficient Water Splitting Electrocatalysis” Nano Energy 2018, 47, 1-7;

33. Y. Zhang, Q. Shao*, S. Long, X. Q. Huang*, “Cobalt-Molybdenum Nanosheet Arrays as Highly Efficient and Stable Earth-Abundant Electrocatalysts for Overall Water Splitting” Nano Energy 2018, 45, 448-455;

34. Y. G. Feng, Q. Shao, B. L Huang, J. B. Zhang, X. Q. Huang*, “Surface Engineering in the Interface of Core/Shell Nanoparticles Promotes Hydrogen Peroxide Generation” Nat. Sci. Rev.2018, 5 (6), 895-906;

35. Y. C. Pi, J. Guo, Q. Shao, X. Q. Huang*, “Highly Efficient Acidic Oxygen Evolution Electrocatalysis Enabled by Porous Ir–Cu Nanocrystals with Three-Dimensional Electrocatalytic Surfaces” Chem. Mater.2018, 30 (23), 8571-8578;

36. J. B. Zhang=, W. W. Xu=, L. Xu,* Q. Shao, X. Q. Huang*, “Concavity Tuning of Intermetallic Pd-Pb Nanocubes for Selective Semihydrogenation Catalysis” Chem. Mater.2018, 30 (18), 6338-6345;

37. 赵丹丹,张楠,卜令正,邵琪,黄小青*, “非贵金属电催化析氧催化剂的最新进展” 电化学2018, 24 (05), 455-465;

2017

38. K. Z. Jiang, D. D. Zhao, S. J. Guo*, X. Zhang, X. Zhu, J. Guo, G. Lu, X. Q. Huang*, “Efficient Oxygen Reduction Catalysis by Subnanometer Pt Alloy Nanowires” Science Advances 2017, 3 (2), e1601705;

39. P. T. Wang=, X. Zhang=, J. Zhang, S. Wan, S. J. Guo*, G. Lu*, J. L. Yao, X. Q. Huang*, “Precise Tuning in Platinum-Nickel/Nickel Sulfide Interface Nanowires for Synergistic Hydrogen Evolution Catalysis” Nat. Commun. 2017, 8, 14580;

40. L. Z. Bu, Q. Shao, B. E, J. Guo, J. L. Yao, X. Q. Huang*, “PtPb/PtNi Intermetallic Core/Atomic Layer Shell Octahedra for Efficient Oxygen Reduction Electrocatalysis” JACS 2017, 139 (28), 9576-9582;

41. S. X. Bai, Q. Shao, P. T. Wang, Q. G. Dai, X. Y. Wang, X. Q. Huang*, “Highly Active and Selective Hydrogenation of CO2 to Ethanol by Ordered Pd-Cu Nanoparticles” JACS 2017, 139 (20), 6827-6830;

42. Y. C. Pi, Q. Shao, P. T. Wang, F. Lv, S. J. Guo*, J. Guo, X. Q. Huang*, “Trimetallic Oxyhydroxide Coralloids for Efficient Oxygen Evolution Electrocatalysis” Angew. Chem. Int. Ed. 2017, 56 (16), 4502-4506;

43. N. Zhang, Y. G. Feng, X. Zhu, S. J. Guo, J. Guo, X. Q. Huang*, “Superior Bifunctional Liquid Fuel Oxidation and Oxygen Reduction Electrocatalysis Enabled by PtNiPd Core-Shell Nanowires” Adv. Mater.2017, 29(7), 1603774-1603780;

44. Y. C. Pi, Q. Shao, P. T. Wang, J. Guo, X. Q. Huang*, “General Formation of Monodisperse IrM (M = Ni, Co, Fe) Bimetallic Nanoclusters as Bifunctional Electrocatalysts for Acidic Overall Water Splitting” Adv. Funct. Mater. 2017, 27 (27), 1700886;

45. K. Z. Jiang, Q. Shao, D. D. Zhao, L. Z. Bu, J. Guo, X. Q. Huang*, “Phase and Composition Tuning of One-Dimensional Platinum-Nickel Nanostructures for Highly Efficient Electrocatalysis” Adv. Funct. Mater. 2017, 27 (28), 1700830;

46. N. Zhang, Q. Shao, Y. C. Pi, J. Guo, X. Q. Huang*, “Solvent-Mediated Shape Tuning of Well-Defined Rhodium Nanocrystals for Efficient Electrochemical Water Splitting” Chem. Mater.2017, 29 (11), 5009-5015;

2016

47. L. Z. Bu, N. Zhang, S. J. Guo*, X. Zhang, J. Li, J. L. Yao, T. Wu, G. Lu, J. Y. Ma, D. Su*, X. Q. Huang*, “Biaxially Strained PtPb/Pt Core/Shell Nanoplate Boosts Oxygen Reduction Catalysis” Science2016, 354 (6318), 1410-1414;

48. L. Z. Bu, S. J. Guo*, X. Zhang, X. Shen, D. Su, G. Lu, X. Zhu, J. L. Yao, J. Guo, X. Q. Huang*, “Surface Engineering of Hierarchical Platinum-Cobalt Nanowires for Efficient Electrocatalysis” Nat. Commun.2016, 7, 11850;

49. P. T. Wang, K. Z. Jiang, G. M. Wang, J. L. Yao, X. Q. Huang*, “Phase and Interface Engineering of Platinum-Nickel Nanowires for Efficient Electrochemical Hydrogen Evolution” Angew. Chem. Int. Ed.2016, 55 (41), 12859-12863;

50. K. Z. Jiang=, P. T. Wang=, S. J. Guo*, X. Zhang, X. Shen, G. Lu, D. Su, X. Q. Huang*, “Ordered PdCu-Based Nanoparticles as Bifunctional Oxygen-Reduction and Ethanol-Oxidation Electrocatalysts” Angew. Chem. Int. Ed.2016, 55 (31), 9030-9035;

51. Y. C. Pi, N. Zhang, S. J. Guo*, J. Guo, X. Q. Huang*, “Ultrathin Laminar Ir Superstructure as Highly Efficient Oxygen Evolution Electrocatalyst in Broad pH Range” Nano Lett. 2016, 16 (7), 4424-4430;

52. J. B. Ding, L. Z. Bu, S. J. Guo, Z. P. Zhao, E. B. Zhu, Y. Huang*, X. Q. Huang*, “Morphology and Phase Controlled Construction of Pt-Ni Nanostructures for Efficient Electrocatalysis” Nano Lett.2016, 16 (4), 2762-2767;

53. N. Zhang, L. Z. Bu, S. J. Guo*, J. Guo, X. Q. Huang*, “Screw Thread-like Platinum-Copper Nanowires Bounded with High-Index Facets for Efficient Electrocatalysis” Nano Lett.2016, 16 (8), 5037-5043;

54. J. B. Ding, Y. Zhou, Y. G. Li*, S. J. Guo*, X. Q. Huang*, “MoS2 Nanosheet Assembling Superstructure with a Three-Dimensional Ion Accessible Site: A New Class of Bifunctional Materials for Batteries and Electrocatalysis” Chem. Mater. 2016, 28 (7), 2074-2080;

55. N. Zhang, S. J. Guo*, X. Zhu, J. Guo, X. Q. Huang*, “Hierarchical Pt/PtxPb Core/Shell Nanowires as Efficient Catalysts for Electrooxidation of Liquid Fuels” Chem. Mater. 2016, 28 (12), 4447-4452;

2015

56. L. Z. Bu, J. B. Ding, S. J. Guo*, X. Zhang, D. Su, X. Zhu, J. L. Yao, J. Guo, G. Lu, X. Q. Huang*, “A General Method for Multimetallic Platinum Alloy Nanowires as Highly Active and Stable Oxygen Reduction Catalysts” Adv. Mater.2015, 27 (44), 7204-7212;

57. Y. Zhang, M. S. Wang, E. B. Zhu, Y. B. Zheng, Y. Huang*, X. Q. Huang*, “Seedless Growth of Palladium Nanocrystals with Tunable Structures: from Tetrahedra to Nanosheets” Nano Lett.2015, 15 (11), 7519-7525;

58. X. H. Sun, K. Z. Jiang, N. Zhang, S. J. Guo*, X. Q. Huang*, “Crystalline Control of {111} Bounded Pt3Cu Nanocrystals: Multiply-Twinned Pt3Cu Icosahedra with Enhanced Electrocatalytic Properties” ACS Nano2015, 9 (7), 7634-7640;

第一作者论文:

59. X. Huang, Y. Huang,* et al. Science, 2015, 348, 1230.

60. X. Huang, Y. Huang,* et al. Nano. Lett., 2014, 12, 4265.

61. X. Huang, Y. Huang,* et al. Energy Environ. Sci., 2014, 7, 2957.

62. X. Huang, Y. Huang,* et al. Angew. Chem. Intl. Ed., 2013, 52, 2520.

63. X. Huang, Y. Huang,* et al. Angew. Chem. Intl. Ed., 2013, 52, 6063.

64. X. Huang, Y. Huang,* et al. Adv. Mater., 2013, 25, 2974.

65. X. Huang, Y. Huang,* et al. Nanoscale, 2013, 5, 6284.

66. X. Huang, Y. Huang,* et al.JMCA, 2013, 1,14449.

67. X. Huang, Y. Huang,* et al. Nano Lett., 2012, 12, 4265.

68. X. Huang, Y. Huang,* et al. Chem.-Eur. J, 2012, 18, 9505.

69. X. Huang, N. Zheng,* et al. Nat. Nanotechol., 2011, 6, 28.

70. X. Huang, N. Zheng,* et al. J. Am. Chem. Soc., 2011, 13, 4718.

71. X. Huang, N. Zheng,* et al. J. Am. Chem. Soc., 2011, 13, 15946.

72. X. Huang, N. Zheng,* et al. Adv. Mater., 2011, 23, 3420.

73. S. Tang,# X. Huang,# N. Zheng,* et al. Adv. Funct. Mater., 2010, 20, 2442.

74. X. Huang, N. Zheng,* et al. J. Am. Chem. Soc., 2009, 39, 13916.

75. X. Huang, N. Zheng,* J. Am. Chem. Soc., 2009, 13, 4602.

76. X. Huang, N. Zheng,* et al. Angew. Chem. Int. Ed., 2009, 48, 4808.

77. X. Huang, N. Zheng,* et al. Small, 2009, 3, 361.





  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖
回复

使用道具 举报

91

主题

119

帖子

157

积分

注册会员

Rank: 2

积分
157
沙发
发表于 2018-12-12 09:59:06 | 只看该作者
苏州大学黄小青ACS Catal.:Pt3Co NPs@Co(OH)2NSs复合材料实现α, β-不饱和醛选择性加氢
α, β-不饱和醇是化工生产中重要的化学中间体,设计出高活性、高选择性、高稳定性的将α, β-不饱和醛选择性加氢成α, β-不饱和醇的催化剂具有重要的意义。近日,苏州大学黄小青教授课题组制备出了Pt3Co纳米颗粒@超薄Co(OH)2纳米片类似“芝麻饼”状的催化材料。实验表明,该催化剂可高活性、高选择性、高稳定性地将α, β-不饱和醛选择性加氢成α, β-不饱和醇。进一步研究表明,Co(OH)2纳米片上的电子会转移到Pt上,使得碳碳双键难以在Pt上吸附并加氢,从而提高了选择性。

Wang H, Huang X, et al. AStrongly Coupled Ultrasmall Pt3Co Nanoparticle-Ultrathin Co(OH)2Nanosheet Architecture Enhances Selective Hydrogenation of α,β-Unsaturated Aldehydes[J]. ACS Catalysis, 2018.
DOI:10.1021/acscatal.8b03471
https://pubs.acs.org/doi/10.1021/acscatal.8b03471

回复 支持 反对

使用道具 举报

13

主题

33

帖子

35

积分

新手上路

Rank: 1

积分
35
板凳
发表于 2018-12-26 14:28:17 | 只看该作者
苏州大学黄小青ACS Catal.:三金属钼酸盐纳米带高效OER
发展高效的贱金属OER催化剂是近年来的研究重点与难点。作者制备了MoNiFe三金属纳米带催化剂用于OER。研究发现,铁的引入可以提高催化剂对中间体的吸附能力,且MoNiFe比例为51:40:9时有最佳的催化效果,电流密度在10 mA cm‒2时对应的过电位仅257 mV,Tafel斜率为51 mV dec-1。

Luo X, Shao Q, Huang X, et al. Trimetallic Molybdate Nanobelts asActive and Stable Electrocatalysts for Oxygen Evolution Reaction[J]. ACS Catalysis, 2018.
DOI: 10.1021/acscatal.8b04521
https://pubs.acs.org/doi/10.1021/acscatal.8b04521

回复 支持 反对

使用道具 举报

36

主题

58

帖子

74

积分

注册会员

Rank: 2

积分
74
地板
发表于 2019-1-15 10:56:43 | 只看该作者
苏州大学黄小青Nano Lett.:Pd3Pb/Pd四方纳米片促进氧还原反应
苏州大学黄小青课题组报道了一种核/壳钯-铅(Pd-Pb / Pd纳米片(NSs)和纳米立方体(NC),用于促进氧还原反应(ORR)。这些核/壳Pd-Pb / Pd NSs和Pd-Pb/ Pd NCs的质量活性增加超过160%和140%。研究表明,拉伸应变Pd壳导致Pd的d-带中心向上移动,由于反键合轨道的贡献而削弱了含氧物质的化学吸附。该研究为燃料电池的高活性和稳定催化剂的设计提供了新的方向。

Tang C, et al. Fully tensile strained Pd3Pb/Pd tetragonal nanosheets enhance oxygen reduction catalysis[J]. Nano Letters,2019.
DOI: 10.1021/acs.nanolett.8b04921
https://doi.org/10.1021/acs.nanolett.8b04921

回复 支持 反对

使用道具 举报

14

主题

24

帖子

32

积分

新手上路

Rank: 1

积分
32
5#
发表于 2019-2-21 14:03:54 | 只看该作者
黄小青&李有勇Nano Energy:CuSn纳米线用于高效CO2电还原,甲酸法拉第效率为90.2%
近日,苏州大学黄小青教授和李有勇教授团队成功合成出一系列相和结构可调节的CuSn纳米线,并应用于CO2电还原上。研究发现,经过结构优化之后,在-1.0 V(vs. RHE)时,FEHCOOH为90.2%。理论计算表明,Sn原子掺杂在CuO(111)表面可以增强*OCHO中间态的吸附,并抑制H2的产生,从而提高了CO2电还原的选择性。

Wang J, Ji Y, Li Y, et al. Phase and Structure Modulating of Bimetallic CuSn Nanowires Boosts Electrocatalytic Conversion ofCO2. Nano Energy, 2019.
DOI: 10.1016/j.nanoen.2019.02.037
https://doi.org/10.1016/j.nanoen.2019.02.037

回复 支持 反对

使用道具 举报

15

主题

28

帖子

30

积分

新手上路

Rank: 1

积分
30
6#
发表于 2019-10-11 19:52:36 | 只看该作者
苏州大学黄小青教授(通讯作者)团队首次报道一维(1D)贵金属纳米结构中的缺陷对实现针对燃料电池反应的高活性和稳定的电催化剂方面是一个主要且必不可少的因素。实验结果表明,Pd-Sn纳米线(NWs)表现出缺陷依赖性性能,其中富含缺陷的Pd4Sn波状NWs对于甲醇氧化反应(MOR)和氧还原反应(ORR)均显示出高催化活性和耐久性。同时,利用密度泛函理论(DFT)计算表明大量的表面空位/聚集的空隙是在Pd4Sn WNWs内形成表面晶界(GBs)的驱动力。通过这种缺陷工程,Pd4Sn WNWs产生了高效的碱性ORR和MOR。总之,该工作强调了缺陷工程在提高实际燃料电池和能源应用中的电催化剂性能方面的重要性。研究成果以题为“Defect Engineering of Palladium-Tin Nanowires Enables Efficient Electrocatalysts for Fuel Cell Reactions”发布在著名期刊Nano Lett.上。


回复 支持 反对

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-5-6 06:58 , Processed in 0.100972 second(s), 38 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表