找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 581|回复: 0
打印 上一主题 下一主题

[专家学者] 武汉大学材料系陈志权教授

[复制链接]

65

主题

69

帖子

91

积分

注册会员

Rank: 2

积分
91
跳转到指定楼层
楼主
发表于 2017-3-22 10:24:14 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
教师姓名:陈志权
单 位        武汉大学物理科学与技术学院5-116
职 称        教授
学 历        博士
E-mail        chenzq@whu.edu.cn
研究方向        材料微观结构与性能, 核技术在材料科学中的应用


姓名: 陈志权
职务/职称: 教授
地址: 武汉大学物理科学与技术学院5-116
电话: Tel: 027-6875-3880, Fax: 027-6875-3880
E-mail: chenzq@whu.edu.cn

个人简介
陈志权,男,教授,博士生导师。1969年4月生。2006年入选教育部新世纪优秀人才支助计划。长期从事材料微观结构与性能方面的研究,先后发表论文100余篇,在物理学领域著名杂志Applied Physics Letters, Physical Review B, Journal of Applied Physics等发表多篇论文。累计已被他人引用1000余次,单篇最多他引次数达100余次。出版学术专著《应用正电子谱学》(第二作者,完成其中的第2、3、8章内容和第4章部分内容)。2008年协助举办第九届国际正电子与电子偶素化学会议。2015年9月举办第17届国际正电子湮没谱学会议。规模200余人,其中国外代表100人。主持国家自然科学基金,国家教育部青年教师骨干基金,国家重点基础研究计划(973预研项目)、湖北省青年杰出人才基金、湖北省自然科学基金等项目多项。现任国际正电子湮没顾问委员会委员(中国仅一人),中国核物理学会理事,全国高等学校电磁学研究会常务理事。

一、学历及工作简历:
1987.9—1991.7 武汉大学物理系本科
1991.9—1993.7 武汉大学物理系硕士研究生
1993.9—1996.7 复旦大学物理二系博士研究生(提前攻博)
1996.9—1998.7 武汉大学物理科学与技术学院博士后
1998.7—1999.5 武汉大学物理科学与技术学院 副教授
1999.5—1999.11 日本筑波大学物理工学系外国人研究员
2000.2—2002.2 日本学术振兴会(JSPS)外国人特别研究员(ID: P99261)
2002.6—2005.6 日本原子力研究所研究员(JAERI Research fellow)
2005.12— 武汉大学物理科学与技术学院 教授

二、研究方向:
1、半导体材料铁磁性与缺陷的关系
2、铝合金时效过程中的微结构演变及析出相结构
3、热电材料微结构与热电性能研究
4、多孔催化剂孔结构及催化性能

三、科学研究:
主持的科研项目:
1.用慢正电子技术研究半导体表面界面缺陷 湖北省自然科学基金 2.0万元 主持 顺利结题
2.用正电子湮没研究重掺杂半导体载流子饱和的微观机制 武汉大学自强基金 3.0万元 主持 顺利结题
3.宽禁带半导体ZnO电子辐照引入缺陷及其回复研究 湖北省杰出青年基金 10万元 主持 顺利结题
4.半导体缺陷的正电子谱学研究 教育部青年骨干教师基金 12万元 主持 顺利结题
5.沸石中半导体纳米团簇材料的正电子研究 国家自然科学基金 20万元 主持 顺利结题
6.ZnO中离子注入掺杂引入缺陷及其对电学和磁学性能的影响 国家自然科学基金 45万元 主持 顺利结题
7.材料缺陷结构三维分布的正电子显像 973预研 38万元 主持 顺利结题
8.ZnO中缺陷的形成机制及其对材料光学电学性能影响的研究 教育部新世纪优秀人才支持计划 50万元 主持 顺利结题
9.用正电子湮没二维多普勒展宽谱研究铝合金时效过程中纳米析出物的微结构 国家自然科学基金 50万元 主持 顺利结题
10.用正电子湮没谱学研究热电材料的缺陷及其对热电性能的影响 国家自然科学基金 90万元 主持 正在进行
11.多孔催化剂孔结构及表面活性物质分散状态的正电子湮没研究 国家自然科学基金 96万元 主持 正在进行
12.用正电子湮没研究热电高分子复合材料的自由体积和界面结构及其对热电性能的影响 国家自然科学基金 73万元 主持 正在进行

发表论文:
发表SCI论文100余篇。近期发表的部分论文如下:
[1] T. Zhang, K. Zhou, X. F. Li, Z. Q. Chen*, X. L. Su, X. F. Tang. Reversible structural transition in spark plasma sintered thermoelectric Zn4Sb3. Journal of Materials science, 51, 2041–2048 (2016)
[2]C.Y. Li, N. Qi, Z.W. Liu, B. Zhou, Z.Q. Chen*, Z. Wang, Effect of synthesis temperature on the ordered pore structure in mesoporous silica studied by positron annihilation spectroscopy. Applied Surface Science, 363, 445-450 (2016)
[3]Z.W. Liu, Z.Q. Chen*, Effect of positron source irradiation on positronium annihilation in fine powdered alumina. Applied Surface Science, 382, 10-14 (2016)
[4]B. Zhao, C.Y. Li, L.L. Liu, B. Zhou, Q.K. Zhang, Z.Q. Chen*, Z. Tang, Adsorption of gas molecules on Cu impurities embedded monolayer MoS2: A first-principles study. Applied Surface Science, Volume 382, 280-287 (2016)
[5]T. Li, H.F. He, T. Zhang, B. Zhao, Z.Q. Chen*, H.Y. Dai, R.Z. Xue, Z.P. Chen, Effect of synthesizing temperatures on the microstructure and electrical property of CaCu3Ti4O12ceramics prepared by sol-gel process. Journal of Alloys and Compounds, 684, 315-321 (2016)
[6]X. F. Li, B. Zhao, T. Zhang, H. F. He, Q. Zhang, D. W. Yang, Z. Q. Chen*, X. F. Tang, Order-disorder transition in clathrate Ba6Ge25studied by positronannihilation. Applied Surface Science, 342, 42-46 (2015)
[7]N. Qi, Z. Q. Chen*, A. Uedono, Molecular motion and relaxation below glass transition temperature in poly (methyl methacrylate) studied by positron annihilation. Radiation Physics & Chemistry, 108, 81-86 (2015)
[8]T. Zhang, K. Zhou, X. F. Li, Z. Q. Chen*, X. L. Su and X. F. Tang, Structural transition of partially Ba-filled thermoelectric CoSb3 investigated by positron annihilation spectroscopy. Journal of Applied Physics 117, 055103 (2015)
[9]X. F. Li, Z. Q. Chen*, C. Liu, H. J. Zhang and A. Kawasuso, Enhanced damage buildup in C+-implanted GaN film studied by a monoenergetic positron beam. Journal of Applied Physics 117, 085706 (2015)
[10]H. Q. Li, B. Zhao, T. Zhang, X. F. Li, H. F. He, Z. Q. Chen*, X. L. Su and X. F. Tang, Influence of O-Co-O layer thickness on the thermal conductivity of NaxCo2O4 studied by positron annihilation. Journal of Applied Physics 118, 035102 (2015)
[11]Q. K. Zhang, B. Zou, X. F. Li, Z.Y. Chen, Z. Q. Chen*, H. Q. Liu, D. Q. Yi, Effect of thermal treatment condition on the Ag precipitates in Al–Ag alloy studied by positron annihilation. Nuclear Instruments and Methods in Physics Research Section B 358, 59-64 (2015)
[12]T. Zhang, K. Zhou, and Z. Q. Chen*, Defect structure of thermoelectric Zn4Sb3. Phys. Status Solidi B 252, 2179-2184 (2015)
[13]H. F. He and Z. Q. Chen*, Positron annihilation studied defects and their influence on thermal conductivity of chemically synthesized Bi2Te3 nanocrystal. Acta Phys. Sin. 64, 207804 (2015) (in Chinese)
[14]T. Zhang, K. Zhou, Z. Q. Chen*. Strain rate effect on plastic deformation of nanocrystalline copper investigated by molecular dynamics. Materials Science and Engineering: A 648, 23-30 (2015)
[15]Y. W. Liu, C. Qian, L. J. Qu, Y. N. Wu, Y. Zhang, X. H. Wu, B. Zou, W. X. Chen, Z. Q. Chen, Z. G. Chi, A Bulk Dielectric Polymer Film with Intrinsic Ultralow Dielectric Constant and Outstanding Comprehensive Properties. Chemistry of Materials, 27, 6543-6549 (2015)
[16]H. F. He, X. F. Li, Z. Q. Chen*, Y. Zheng, D. W. Yang, and X. F. Tang, Interplay between Point Defects and Thermal Conductivity of Chemically Synthesized Bi2Te3 Nanocrystals Studied by Positron Annihilation. Journal of Physical Chemistry C 118, 22389-22394 (2014)
[17]T. Li, D. W. Liu, H. Y. Dai, H. W. Xiang, Z. P. Chen, H. F. He, Z. Q. Chen, Effect of defect on the nonlinear and dielectric property of Ca(1–x)SrxCu3Ti4O12 ceramics synthesized by sol–gel process. Journal of Alloys and Compounds, 599, 145-149 (2014)
[18]M. Jiang, X. D. Xue, Z. Q. Chen*, Y. D. Liu, H. W. Liang, H. J. Zhang, A. Kawasuso, Defects and acceptor centers in ZnO introduced by C+-implantation. Journal of Materials Science, 49, 1994-1999 (2014)
[19]M. Jiang, L. L. Liu, Z. Wang, Z. Q. Chen*, Microstructure of ZnO-Li2CO3 compound studied by positron annihilation spectroscopy. Physca Status Solidi (a) 211, 206-212 (2014)
[20]Z. W. Liu, H. J. Zhang, Z. Q. Chen*, Monolayer dispersion of CoO on Al2O3 probed by positronium atom. Applied Surface Science, 293, 326-331 (2014)
[21]B. Zou, Z.Q. Chen*, C.H. Liu, J.H. Chen, Microstructure evolution of heavily deformed AA5083 Al–Mg alloy studied by positron annihilation spectroscopy. Applied Surface Science, 296, 154-157 (2014)
[22]B. Zou, Z.Q. Chen*, C.H. Liu, J.H. Chen, Vacancy–Mg complexes and their evolution in early stages of aging of Al–Mg based alloys. Applied Surface Science, 298, 50-55 (2014)
[23]D. D. Wang, N. Qi, M. Jiang, Z. Q. Chen*, Defects versus grain size effects on the ferromagnetism of ZrO2 nanocrystals clarified by positron annihilation, Applied Physics Letters, 102, 042407 (2013).
[24]M. Jiang, D. D. Wang, Z. Q. Chen*, S. Kimura, Y. Yamashita, A. Mori, and A. Uedono, Chemical effect of Si+ ions on the implantation-induced defects in ZnO studied by a slow positron beam, Journal of Applied Physics, 113, 043506 (2013)
[25]C. Y. Li, H. J. Zhang, Z. Q. Chen*, Reaction between NiO and Al2O3 in NiO/r-Al2O3 catalysts probed by positronium atom, Applied Surface Science, 266, 17-21 (2013)
[26]Qi Ning, Jia Yan-Lin, Liu Hui-Qun, Yi Dan-Qing, Z. Q. Chen*, Evolution of Defects in Deformed Cu-Ni-Si Alloys during Isochronal Annealing Studied by Positron Annihilation, Chinese Physics Letters, 29, 127803 (2012)
[27]H. J. Zhang, Z. Q. Chen*, and S. J. Wang, Monolayer dispersion of NiO in NiO/Al2O3 catalysts probed by positronium atom, Journal of Chemical Physics, 136, 034701 (2012)
[28]M. Jiang, D. D. Wang, B. Zou, Z. Q. Chen*, A. Kawasuso, and T. Sekiguchi, Effect of high temperature annealing on defects and optical properties of ZnO single crystals, Phys. Status Solidi A 11, 2126 (2012)
[29]Zhi-Yuan Chen, Z. Q. Chen*, B. Zou, X. G. Zhao, Z. Tang, and S. J. Wang, Defect mediated ferromagnetism in Ni-doped ZnO nanocrystals evidenced by positron annihilation spectroscopy, Journal of Applied Physics, 112, 083905 (2012)
[30]D. D. Wang, Z. Q. Chen*, C. Y. Li, X. F. Li, C. Y. Cao, Z. Tang, Correlation between ferromagnetism and defects in MgO nanocrystals studied by positron annihilation, Physica B: Condensed Matter, 407, 2665-2669 (2012)   (他引1次)
[31]S. H. Huang, Z. Q. Chen*, H. J. Zhang, Three-gamma annihilation of ortho-positronium in NiO/γ-Al2O3 catalysts detected by positron lifetime and coincidence Doppler broadening measurements, Radiation Physics and Chemistry, 81, 791-795 (2012)
[32]Zhang Hong-Jun, Liu Zhe-Wen, Z. Q. Chen*, S. J. Wang, Chemical Quenching of Positronium in CuO/Al2O3 Catalysts, Chinese Physics letters, 28, 017802 (2011)
[33]Qi Ning, Wang Yuan-Wei, Wang Dong, Wang Dan-Dan, Z. Q. Chen*, Positron annihilation study of the microstructure of Co doped ZnO nanocrystals, Acta Phys. Sin. 60, 107805 (2011))   (他引2次)
[34]Zhi-Yuan Chen, Z. Q. Chen*, D. D. Wang, S. J. Wang, Correlation between interfacial defects and ferromagnetism of BaTiO3 nanocrystals studied by positron annihilation, Applied Surface Science, 258, 19-23 (2011)   (他引4次)
[35]Dong Wang, Z. Q. Chen*, D. D. Wang, J. Gong, C.Y. Cao, Z. Tang, L.R. Huang, Effect of thermal annealing on the structure and magnetism of Fe-doped ZnO nanocrystals synthesized by solid state reaction, Journal of Magnetism and Magnetic Materials, 322, 3642-3647 (2010)   (他引7次)
[36]C. Li, H.J. Zhang, Z. Q. Chen*, Chemical quenching of positronium in Fe2O3/Al2O3 catalysts, Applied Surface Science, 256, 6801-6804 (2010)
[37]H. J. Zhang, Z. Q. Chen*, S. J. Wang, A. Kawasuso and N. Morishita, Spin conversion of positronium in NiO/Al2O3 catalysts observed by coincidence Doppler broadening technique, Phys. Rev. B 82, 035439 (2010)
[38]D. Wang, Z. Q. Chen*, D. D. Wang, N. Qi, J. Gong, C. Y. Cao, and Z. Tang, Positron Annihilation study of the interfacial defects in ZnO nanocrystals: Correlation with ferromagnetism, J. Appl. Phys. 107, 023524 (2010)   (他引25次)
[39]D. Wang, Z. Q. Chen*, F. Zhou, W. Lu, M. Maekawa, A. Kawasuso,  Ferromagnetism and microstructure in Fe+-implanted ZnO, Applied Surface Science, 255, 9371-9375 (2009)  (他引3次)
[40]Z. Q. Chen, K. Betsuyaku, A. Kawasuso, Vacancy defects in electron-irradiated ZnO studied by Doppler broadening of annihilation radiation, Phys. Rev. B 77, 113204 (2008)   (他引16次)
[41]Z. Q. Chen, M. Maekawa, A. Kawasuso, and H. Naramoto, Ion species dependence of the implantation-induced defects in ZnO studied by a slow positron beam, Phys. Stat. Sol. (c) 4, 3646 (2007)  (他引1次)
[42]X. Q. Meng, Z. Q. Chen, P. Jin, Z. G. Wang, and Long Wei, Defects around self-organized InAs quantum dots measured by slow positron beam, Appl. Phys. Lett. 91, 093510 (2007)   (他引4次)
[43]Z. Q. Chen, S. J. Wang, M. Maekawa, A. Kawasuso, H. Naramoto, X. L. Yuan, and T. Sekiguchi, Thermal evolution of defects in as-grown and electron-irradiated ZnO studied by positron annihilation, Phys. Rev. B 75, 245206 (2007)  (他引37次)
[44]Z. Q. Chen, A. Kawasuso, Vacancy-type defects induced by He-implantation in ZnO studied by a slow positron beam, Acta Phys. Sin. 55, 4353 (2006)  (他引1次)
[45]Z. Q. Chen, M. Maekawa, A. Kawasuso, S. Sakai, and H. Naramoto, Annealing process of ion-implantation-induced defects in ZnO: Chemical effect of the ion species, J. Appl. Phys. 99, 093507 (2006)  (他引33次)
[46]Z. Q. Chen, M. Maekawa, A. Kawasuso Energy Variable Slow Positron Beam Study of Li+-Implantation-Induced Defects in ZnO, Chinese Physics Letters, 23, 675 (2006)   (他引3次)
[47]Z. Q. Chen, M. Maekawa, A. Kawasuso, S. Sakai, and H. Naramoto, Electron Irradiation Induced Defects in ZnO Studied by Positron Annihilation, Physica B 376-377, 722 (2006)   (他引12次)
[48]Z. Q. Chen, M. Maekawa, A. Kawasuso, R. Suzuki, and T. Ohdaira, Interaction of nitrogen with vacancy defects in N+-implanted ZnO studied using a slow positron beam. Appl. Phys. Lett. 87, 091910 (2005)   (他引18次)
[49]Z. Q. Chen, A. Kawasuso, Y. Xu, H. Naramoto, X. L. Yuan, T. Sekiguchi, R. Suzuki, and T. Ohdaira, Microvoid formation in hydrogen-implanted ZnO probed by a slow positron beam. Phys. Rev. B71, 115213 (2005)  (他引54次)
[50]Z. Q. Chen, S. Yamamoto, A. Kawasuso, Y. Xu, and T. Sekiguchi, Characterization of homoepitaxial and heteroepitaxial ZnO films grown by pulsed laser deposition. Appl. Surf. Sci. 244, 377 (2005)  (他引14次)
[51]Z. Q. Chen, A. Kawasuso, Y. Xu, H. Naramoto, X. L. Yuan, T. Sekiguchi, R. Suzuki, and T. Ohdaira, Production and recovery of defects in phosphorus implanted ZnO. J. Appl. Phys. 97, 013528 (2005)   (他引93次)
[52]Z. Q. Chen, M. Maekawa, S. Yamamoto, A. Kawasuso, X. L. Yuan, T. Sekiguchi, R. Suzuki, and T. Ohdaira, Evolution of voids in Al+-implanted ZnO probed by a slow positron beam. Phys. Rev. B69, 035210(2004)   (他引56次)
[53]Z. Q. Chen, M. Maekawa, T. Sekiguchi, R. Suzuki and A. Kawasuso, Ion-implantation Induced Defects in ZnO Studied by a Slow Positron Beam. Material Science Forum, Vol.445-446, 57(2004)  (他引3次)
[54]Z. Q. Chen, T. Sekiguchi, X. L. Yuan, M. Maekawa, and A. Kawasuso, N+ ion-implantation induced defects in ZnO studied by slow positron beam. J.Phys.:Condens.Matter, 16, S293(2004)  (他引16次)
[55]Z. Q. Chen, S. Yamamoto, M. Maekawa, A. Kawasuso, X. L. Yuan and T. Sekiguchi, Postgrowth annealing of defects in ZnO studied by positron annihilation, X-ray diffraction, Rutherford backscattering, cathodoluminescence and Hall measurements. J. Appl. Phys. 94, 4807(2003)  (他引101次)
[56]Z. Q. Chen, A. Uedono, T. Suzuki and J.S. He, Positron Annihilation Study of Free Volume Holes in Polymers and Polymer Blends. J. Radioanal.& Nucl. Chem., Vol.255, no.2, 291-294(2003)  (他引6次)

四、社会兼职
1、第11届中国正电子湮没委员会主任
2、国际正电子湮没顾问委员会委员
3、中国核物理学会理事
4、全国高等学校电磁学研究会第五届常务理事

  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖
回复

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-6-2 04:14 , Processed in 0.083683 second(s), 33 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表