找回密码
 立即注册

QQ登录

只需一步,快速开始

中国科学院宁波工业技术研究院材料技术研究所刘富

查看数: 1843 | 评论数: 5 | 收藏 0
关灯 | 提示:支持键盘翻页<-左 右->
    组图打开中,请稍候......
发布时间: 2017-9-25 08:55

正文摘要:

刘富,博士,中国科学院宁波材料技术与工程研究所研究员,博士生导师。2002年6月毕业于青岛科技大学塑料工程专业,同年进入浙江大学高分子化学与物理专业攻读硕士和博士学位,2007年9月获博士学位,之后分别在浙江大 ...

回复

zaotuo 发表于 2021-3-23 16:46:19
日益严重的含油废水问题给生态系统和人类可持续发展带来巨大挑战,加剧了全球性的水资源短缺。膜分离技术具有分离装置简单、易于操作运行、分离效率高、成本低、应用范围广等优点,在含油废水处理中受到了广泛关注。
  聚合物微孔膜(如聚偏氟乙烯PVDF)具有易加工成型、微孔结构可控、化学及物理稳定性好等优点,在膜分离材料领域占据主流地位。非溶剂诱导相分离是制备PVDF微孔膜的主要手段之一。主要通过相分离的热力学及动力学因素对聚合物膜的微孔结构进行调控,该过程是一个典型的物理过程,不涉及膜的表界面功能调控。然而,微孔膜的表界面功能如表界面浸润性及抗污染性能等对于分离性能具有重要影响。中国科学院宁波材料技术与工程研究所刘富研究员提出基于相转化全过程赋予聚合物微孔膜表界面特定化学功能的系统方法,如图1。围绕相转化全过程调控功能分子在膜及微孔表面的界面迁移及界面交联反应,在实现相转化微孔调控的同时实现了对膜的化学功能改性,相关系统工作作为邀请综述发表在《功能高分子学报》,2020, 33 (03): 1-14.。

  油水分离在近年来取得了众多进展,主要是从表面微纳结构及表面化学能二元协同理论构筑超亲水、水下超疏油(或超疏水、油下超疏水表面),实现分离过程中对水的传输及乳液中分散相油滴的截留。在前期工作中,科研人员通过相转化化学功能化策略制备了系列PDA-AuNPs修饰的PVDF油水分离及催化膜(Chemical Engineering Journal, 2018, 334, 579)、PVDF微球结构纳米纤维膜(Journal of Material Chemistry A, 2018, 6, 7014)、表面活性剂Span80修饰的PVDF纳米纤维膜(Applied Surface Science, 2019, 485, 179-187)、PDA微球改性的纳米纤维膜(Journal of Membrane Science, 2019, 581, 105-113)、具有Janus界面特性的PVDF油水分离膜(ACS Applied Materials & Interfaces, 2018, 10, 24947-24954)、碳质微球/Ag改性的纳米纤维膜(Journal of Membrane Science, 2020, 614, 118491)等,如图2。
  上述关于超浸润膜的界面修饰方面的工作主要采用“被动抗污”策略,难以避免油水分离长期运行过程中的油污染问题,其原因在于上述超浸润膜的油水分离机理是尺寸筛分及亲和性差异,被截留的分散相在膜表面长时间聚集形成严重的膜污染,导致油水分离性能失效。在近期工作中科研人员提出了微孔膜的主动破乳及抗污策略,即聚结破乳油水分离,通过双相分离(蒸汽和非溶剂)及原位聚合PHEMA的方法,制备具有双尺度套孔结构和中等浸润性的PVDF膜(59±1°),通过膜破乳作用实现油/水乳液的连续“无污染”分离,如图3。通过膜结构和分离过程压力的调控,实现了连续相和分散相同时透过膜,在膜内破乳、聚并和分相。与超浸润膜相比,在不进行物理化学清洗的连续错流分离条件下,2h内具有稳定的渗透通量(1078±50 Lm–2h–1bar–1)和分离效率(99.0%),如图4,相关成果发表于ACS Applied Materials & Interfaces 2021, 13, 3, 4731-4739。
  此外,研究人员通过在纳米纤维表面进行催化原位产生微气泡实现破乳分离:在纳米MnO2的催化作用下,H2O2在PAN纳米纤维膜表面原位分解生成氧微气泡。通过微气泡与油的疏水作用显著抑制了油滴在膜表面的沉积,如图5。经过65min的连续水包油分离后,其渗透通量仍然高达14755±1930 Lm–2h–1bar–1。微气泡的原位生成实现了膜表面油类污染物的实时去除,从而赋予了油水分离过程中膜的主动抗污性能。相关成果发表于Journal of Membrane Science, 2020, 621, 119005。
  上述工作得到国家自然科学基金(51673209、51703233、51661165012),国家重点研发计划(2017YFB0309600),香港国家助学委员会和国家自然科学基金资助的国家自然科学基金/中国合作基金会联合研究计划(N_HKU706/16),中科院青年创新促进会优秀会员(2014258),浙江省高层次人才计划专项(ZJWR0108020),浙江省杰出青年基金(LR20E030002)的支持。

yongxin 发表于 2021-3-17 17:13:39
近年来水体环境中难降解有机物(多环芳烃、个人护理产品、抗生素、染料等)及多种重金属离子日益增加,对环境和生命健康危害严重,常规的处理手段如膜分离或生物处理难以解决。膜催化结合膜分离和催化过程,既可以实现选择性分离,又能在动态连续过程中实现对水体中有机物及重金属的转化、消解甚至完全矿化,此外还能解决常规膜材料的膜污染物问题,因此受到国际上环境及材料领域学者及工业界的关注。
  具有有序基元体结构的有机框架材料包括金属有机框架(MOF)和共价有机框架(COF)等,相对于传统的聚合物基膜材料(如聚偏氟乙烯膜、聚砜膜、聚醚砜膜、聚酰胺膜等),具有均匀且可调的孔径、高孔隙率、便捷的组装方式及功能可设计性,具有广阔的应用前景。基于有序框架材料的催化膜的设计、制备及其对难降解有机物的催化降解的研究具有重要科学意义和应用价值。中国科学院宁波材料技术与工程研究所刘富研究员团队近期在有序框架催化膜方面取得了系列进展,如下。
  (1)酰胺类COF吸附材料:课题组根据软硬酸碱理论设计了两种具有不同骨架和官能团含量的酰胺类二维COF纳米材料:芳香二胺构筑的COF-TP和脂肪二胺构筑的COF-TE。酰胺基通过多配位作为Pb(II)活性吸附位点,其中较少的芳香族骨架和弱的堆积使得Pb(II)在COF-TE中具有更高的扩散能力,见图1,对Pb(II)具有较高的饱和吸附容量(185.7mg/g),并具有优异的再生性能。相关工作发表在Chemical Engineering Journal 370 (2019) 822-830。
  (2)共价三嗪框架分子筛分膜(CTF-1):二维共价三嗪框架材料(2D-CTF)是一类由C、N元素组成的具有三嗪环结构的二维共价有机框架材料,具有优异的化学结构稳定性和尺寸可调的面内结构孔,是一类极具潜力的二维材料分离膜基元体。传统的共价三嗪框架材料制备条件较为苛刻,通常基于离子热方法利用熔融氯化锌作为催化剂在高温条件下聚合而成,这使得合成产物中存在骨架结构碳化缺陷以及锌离子的残留,导致分离膜的结构及性能缺陷。课题组利用三氟甲磺酸和二氯甲烷形成的界面作为聚合反应的2D微界面,制备了具有寡层结构的2D-CTF-1纳米片层材料,见图2,该二维纳米材料具有优异的溶剂分散性。通过多层组装的方法制备了2D-CTF-1分离膜,研究发现片层组装方式更倾向于AA堆叠,通过改变压力研究与通量之间的关系发现面内孔对通量贡献率约为75%、层间通道贡献约为25%,基于面内孔径尺寸实现了不同尺寸、不同电荷的染料/分子精准筛分性能,见图3。(《功能高分子学报》,2019,32,610-616;Journal of Membrane Science 595 (2020) 117525)。
  (3)共价三嗪框架催化自清洁膜:共价三嗪框架膜具有精准的分子筛分的性能,但是在对小分子有机物的分离过程中易发生表面吸附及膜污染,导致长期运行通量下降。课题组将零维(0D)半导体光催化剂CdS量子点原位引入到CTF-1的框架中形成[0+2D]复合异质结纳米片,见图4。作为“连接头”的CdS可以促进光生载流子在2D CTF-1平面外的离域,从而有效延长了电荷转移的长度。同时,二维CTF-1促进的加速电荷转移还可以有效克服CdS与光生载流子易于重组的缺点。两者都强烈抑制了电子/空穴复合,从而可以大大提高催化效率。通过原位生长严格控制CdS量子点尺寸(~3nm),且分布均匀在2D-CTF-1纳米片上,保证了组装后的CdS/CTF-1复合膜的分离效率,并增大了2D-CTF-1膜的层间传质通道,提高了渗透通量并维持高截留率,减缓了连续运行期间通量的下降。电子/空穴分离效率的提高使CdS/CTF-1膜具有出色的光催化原位清洁和灭菌性能。被污染的CdS/CTF-1膜可以通过光照实现膜功能再生,在多次循环操作中其通量恢复率可达到95%以上,见图5(Chemical Engineering Journal,2021,127784)。
  (4)PB/PVDF混合基质催化膜:普鲁士蓝(PB)作为一类金属有机骨架材料,具有面心立方结构,由氰基配体与Fe(II)和Fe(III)交替连接。独特的化学成分使得PB及其类似物成为有应用前途的Fenton催化剂。课题组充分利用其催化优势,通过原位生长的方式将高结晶度的PB立方微晶牢固地嵌入到聚偏氟乙烯(PVDF)中制备出性能出色的催化膜反应器,见图6。所制备膜错流过滤连续运行24小时,通量稳定在300 L m-2 h-1,去除效率高达99%以上,未有明显衰减,具有优异的催化降解及抗污染能力。对多种污染物罗丹明B、双酚A、腐殖酸均实现高效瞬时降解。ESR表明·OH和·OOH在降解中起到主要作用。所构筑的PVDF混合基质膜提供了曲折的传输路径,使得目标污染物在流动过程中可以与活性位点充分接触完成高效降解过程,见图7。相关工作发表在Applied Catalysis B: Environmental 273 (2020) 119047。
  上述工作得到国家自然科学基金(51603209、5161101025),国家重点研发计划(2017YFB0309600),中科院青年创新促进会优秀会员(2014258),浙江省高层次人才计划专项(ZJWR0108020),宁波科学技术局(2019C50028、2017C110034、2014B81004)的支持。

xinkai 发表于 2019-10-8 09:02:42
2019年自然科学基金面上项目-非对称浸润性微孔膜的非对称渗透传质行为及机制研究
批准号        51973230       
学科分类        分离与吸附材料 ( E030902 )
项目负责人        刘富       
依托单位        中国科学院宁波材料技术与工程研究所
资助金额        60.00万元       
项目类别        面上项目       
研究期限        2020 年 01 月 01 日 至2023 年 12 月 31 日

qiumian 发表于 2018-8-12 21:06:42

自抗凝透析器让血更纯净

肝脏和肾脏被誉为人体内两大污物处理工厂,负责清除人体运行产生的或外来毒素。如果肾脏发生病变,无法将毒素排出体外,就会引发尿毒症。

而透析器又称“人工肾”,是帮助肾病患者完成血液透析的核心部件。透析时产生的凝血反应是长期困扰患者和医生的难题:如果透析过程中不注射肝素,就会发生严重的凝血反应,而注射了肝素则会加剧出血风险。

中科院宁波材料技术与工程研究所研究员刘富团队日前在自抗凝透析器研究方面取得系列进展,相关论文Preparation and evaluation of a self-anticlotting dialyzer via an interface crosslinking approach发表在膜领域国际权威期刊Journal of Membrane Science上。

精准分离中小分子废物

资料显示,中国慢性肾病患者高达1.2亿人,已发展成终末期肾病患者数量为200万;但目前仅有30多万人接受透析治疗,治疗率仅为15%,远低于欧美国家的90%。

治疗尿毒症的主要方式目前有血液净化与肾脏移植两种。由于肾源急缺,中国尿毒症患者的肾脏移植率不足1%,而且肾源急缺的难题难以在短期内解决,因此血液净化成了治疗尿毒症的主要手段。

透析器通过一定的过滤作用进行血液净化,替代或者部分替代肾脏功能。刘富在接受《中国科学报》记者采访时介绍说,透析器由1万根以上的中空纤维膜组成,有效过滤面积为1到2平方米,接近于人体肾脏血管总滤过面积。其中每根中空纤维膜的内径为180~200微米,壁厚为30~50微米,从内壁到外壁分布有纳米到微米级的微孔,从而起到过滤作用——即清除血液中的中小分子毒素和多余的水分,而保留血液中的大分子物质及血细胞等。

正常工作的肾脏主要功能之一是排出人体代谢产物中小分子物质,比如相对分子量尿素60、肌酐113、尿酸168,以及中分子物质,比如相对分子量菊粉5200、β2-微球蛋白11800等;同时需要保留人体中的大分子蛋白等有益物质。

“这主要依靠肾脏中肾小球的过滤作用实现。”刘富介绍说,“透析器中则主要通过膜微孔结构调控来清除中小分子,但是目前的聚合物中空纤维膜对中分子的清除效率不高,难以与人体肾脏精准的分离相比。”

为解决这一问题,该团队通过热力学耦合动力学梯度调控技术,将聚合物微孔膜的孔径控制在2~4纳米,从而实现中小分子的精准分离。

探索无肝素透析

谈到自己最初对透析膜研究产生兴趣的原因,刘富回忆说,这要追溯到16年前的2002年,当时他正在浙江大学攻读博士。

“导师徐又一教授是国内最早研究聚丙烯膜人工肺的专家,在一次谈话中得知徐老师的父亲在医院接受血液透析,面临着是否注射肝素的难题。”刘富解释说,“如果透析过程中不注射肝素,就会发生严重的凝血反应,而注射了肝素则会加剧出血风险。当时,徐老师就意识到血液透析膜生物相容性的重要性,但国内的研究条件还不具备。”

刘富心里一直暗暗记着这个课题,想以后有机会一定好好研究一下。结束了在英国伦敦帝国理工学院的博士后研究后,刘富回到中国科学院宁波材料所工作,2014年开始将自己在聚合物微孔膜方向的研究从水处理领域延伸到血液净化领域。

作为体外血液循环接触材料,透析膜与血液接触时容易发生特异性或非特异性相互反应,也就是血液相容性。通常血、膜接触后容易发生凝血异常、血小板黏附和活化等,也就是俗称的血栓现象。

“因此需要对膜的表面进行抗凝修饰,前期的研究中,我们主要通过膜表面PEG化、两性离子化、肝素化以及类肝素化修饰,探索了聚合物微孔膜表面的抗凝机制,为自抗凝透析器的研制奠定了基础。”刘富表示。

这其中最难突破的关键技术,是如何在一万根以上内径不到200微米的中空纤维膜狭小局限空间的内壁上实现抗凝修饰。据介绍,目前常用的共混技术,无法达到自抗凝的效果,且存在共混分子的迁移风险。而常规的表面接枝技术无法实现狭小内孔的修饰。

“通过界面交联及流控技术,我们尝试首先将改性溶液在透析器中进行内循环,通过微溶胀、吸附及交联过程将具有序列分布的抗凝分子修饰在膜内壁,从而实现了自抗凝透析器的制备。”这一想法诞生在2015年,最终团队花费了近4年的时间将其实现。

新型自抗凝透析器

自从意识到血液透析膜属于典型的“卡脖子”技术之后,刘富团队加强了对血液透析膜从基础研究、关键技术到产业的全链条研究。2012年,他们在国内首次提出了生物基聚合物微孔膜用于血液透析的概念;2016年首次通过界面交联技术对聚合物微孔膜进行表面亲水及抗凝修饰,搞清了聚合物膜的抗凝机制;2018年将该技术首次在临床用的透析器上获得了突破,进一步结合流控技术实现了整支透析器的抗凝修饰,为下一步的无肝素透析临床应用奠定了基础。

所谓自抗凝透析器,指的是自身具有抗凝特性的透析器,主要是在聚合物,比如聚砜或聚醚砜中空纤维膜的内壁上,通过流控技术修饰了抗凝分子基团,包括乙烯基吡络烷酮、磺酸基团和羧酸基团。而常用的聚砜或聚醚砜中空纤维膜透析器,由于仅共混添加了一种亲水分子聚乙烯基吡络烷酮,血液相容性差,在透析过程中仍需注射肝素,而长期肝素使用,又会诱导血小板减少症等,并且共混分子存在迁移到血液内的风险。

自抗凝透析器因为通过界面交联的技术在膜表面修饰了具有基团序列分布的抗凝分子,一方面可以改善现有透析器的血液相容性,比如活化部分凝血活酶时间APTT提高10倍以上,减少肝素依赖症;另一方面也可以避免外界分子向体内迁移的风险,对于真正实现临床意义的无肝素透析,具有重要应用价值。

目前,刘富正在积极与医院和企业间进行协同合作研究,希望能早日将自抗凝透析器推向临床应用。“未来,希望在人工肝、人工肺等人工脏器方向,以及污水净化、油水分离和海水淡化等方向进行研究。”

相关论文信息:https://doi.org/10.1016/j.memsci.2018.05.056


laorou 发表于 2018-4-25 11:39:23
宁波材料所在PVDF油水分离膜材料方面取得系列新进展

随着我国经济的快速发展,大量的含油污水被排放,同时海洋原油泄漏事件频发,对生态环境和人类的健康造成了严重威胁。传统油水分离方法主要包括气浮法、离心分离法、吸附和燃烧等,但均存在效率低、成本高、应用范围窄等缺点。超浸润分离膜由于具有结构可控性好、分离效率高和分离精度高的优点,目前成为油水分离领域的研究热点。近期,中科院宁波材料所刘富研究员团队(先进功能膜)在高性能聚偏氟乙烯(PVDF)油水分离膜方向取得了一系列新成果。

  1)PVDF瞬时催化及油水分离膜。针对复杂体系的油水分离问题,以机械性能和热稳定性能优异的聚偏氟乙烯(PVDF)为基膜,制备得到具有微纳米多级组装结构的PVDF-AuNPs微反应器分离膜。首先利用聚多巴胺作为膜表面“功能涂层”,对PVDF基膜进行初步修饰,然后将AuNPs微球通过动态过滤的方法负载到PVDF的指状孔内,形成微反应器。所得膜能够对含有硝基苯酚的水包油复杂体系,实现瞬时的硝基苯酚催化降解和油水分离。该方法对于将油水分离膜应用于实际含油废水处理,起到了重要的推动作用。相关工作已经发表于Chemical Engineering Journal, 2018, 334,579,王建强副研究员和吴紫阳为共同第一作者,刘富研究员为通讯作者。
图1 PVDF指状催化反应器的制备过程
  图2 PVDF膜油水分离及催化性能
  2)具有超稳定刚性浸润表面的柔性PVDF油水分离膜。针对通常聚合物微孔膜的表面微纳结构不稳定、在化学腐蚀及物理损伤下易蠕变及衰减的问题,通过仿生植物根系固定土壤模型,利用微孔PVDF膜表面的微纳结构限域固定TiO2纳米粒子,制备了具有刚性界面TiO2界面的柔性PVDF微孔膜。所得膜具有优异的稳定性,能够抵抗极端物理损伤(液压、手指擦拭、液氮淬火后砂纸磨擦)、高温和苛刻的化学腐蚀(强酸、强碱、强氧化剂次氯酸钠),并且能够连续有效分离含有表面活性剂的油包水乳液。在错流模式下,通过负载超亲水纳米TiO2粒子制备的PVDF膜,可实现水包油乳液的连续分离(通量达1700 ,分离效率>96%)(如图3)。 相关工作已经发表在Scientific Reports, 2017, 7: 14099,熊竹副研究员和林海波为共同第一作者,刘富研究员为通讯作者,文章发表后受到了同行的广泛关注,该论文是2017年Scientific Reports期刊阅读量最多的前100篇文章之一。
图3 超浸润刚性界面PVDF膜的制备过程
图4 刚性界面PVDF膜油水分离性能
  3)超大通量静电纺丝PVDF油水分离膜。除了油水废液的复杂性和膜界面稳定性的制约,油水分离膜往往也受限于膜的低通量和易污染性。针对该问题,团队采用静电纺丝技术,通过将静电纺丝和静电喷涂相结合,制备得到了具有超高通量的PVDF纳米纤维油水分离膜,具有独特的微米级纤维及纳米级微球复合的结构。将该膜应用于高粘度的十甲基环五硅氧烷包水体系时,渗透系数高达88166±652 (分离效率>99%),远高于已报道数据。该方法制备过程简单,无需复杂的表面改性过程,是一种适宜工业化生产的新方法。相关工作已经发表在Journal of Materials Chemistry A, 2018, 6, 7014-7020。浙江理工大学的吴金丹博士和硕士生丁雅杰是论文的共同第一作者,王建强副研究员、浙江理工大学王际平教授和刘富研究员为该工作的共同通讯作者。
图5 超高通量PVDF纳米纤维油水分离膜的制备过程
  图6 纳米纤维PVDF膜油水分离性能
  上述系列研究工作受到了国家重点研发计划(2017YFB0309600)、国家自然科学基金(5161101025、51475449、51703233)、中科院青促会(2014258)和宁波市创新团队(2014B81004)等项目的资助支持。

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-6-26 21:59 , Processed in 0.176568 second(s), 35 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表