找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 232|回复: 0

[材料资讯] 姚宏斌等开发出镧系金属卤化物基固态电解质新家族

[复制链接]

78

主题

138

帖子

209

积分

中级会员

Rank: 3Rank: 3

积分
209
发表于 2023-4-15 10:00:00 | 显示全部楼层 |阅读模式
近日,中国科学技术大学姚宏斌课题组、李震宇课题组与浙江工业大学陶新永课题组合作,设计开发出镧系金属卤化物基固态电解质新家族LixMyLnzCl3(Ln为镧系金属元素,M为非镧系金属元素)。得益于镧系金属元素的低电负性,以及金属氯化物良好的耐氧化性和可变形性,镧系金属卤化物基固态电解质可直接与锂金属负极和三元正极匹配,实现无任何电极修饰且室温可运行的全固态锂金属电池。相关研究成果以《A LaCl3-based lithium superionic conductor compatible with Li metal》为题,于4月5日发表在Nature杂志上。
        金属卤化物固态电解质(LixMCl6, M为金属元素)因其宽电化学窗口、良好的室温电导率和不错的可变形性,展现出比氧化物/硫化物固态电解质更好的高电压氧化物正极适配性。2018年以来,基于Li3YCl6、Li3InCl6和Li3ScCl6等金属卤化物固态电解质的全固态锂电池实现了搭载钴酸锂、镍钴锰等4 V级正极的长循环,引起了广泛关注。然而,目前报道的大多数LixMCl6金属卤化物固态电解质采用易被还原的金属元素构建传导框架,导致对锂金属不稳定,只能采用高电位的锂铟合金,限制了高能量密度全固态锂金属电池的开发。同时,传统的LixMCl6晶格中氯离子是六方或立方紧密堆积,其空间体积较小,对锂离子的传导有一定限制,使其电导率大多在1 mS/cm。因此,开发对锂金属负极稳定的新型快离子导体框架结构是发展高比能全固态锂金属电池面临的关键挑战。

固态电解质

固态电解质
图1.LaCl3基固态电解质的设计理念
       针对以上问题,团队成员发现,以LaCl3为代表的镧系金属卤化物LnCl3(Ln=La, Ce, Pr, Nd, Sm等)晶格中氯离子呈非紧密堆积形式,天然存在丰富的一维大尺寸孔道,适合锂离子的高速传输,并可通过镧空位形成连续的三维传导。分子动力学的模拟预测表明,具有独特非密堆积氯离子排列方式的LaCl3框架可实现13.8 mS cm-1的室温离子电导率(图1)。团队成员选择高价离子掺杂策略来制造镧空位,得益于大尺寸高速离子通道和相邻通道间超强的交换作用,优化的Li0.388Ta0.438La0.475Cl3表现出3.02 mS cm-1的高室温离子电导率和0.197 eV的低活化能,优于传统氧化物和最近报道的卤化物固态电解质,可与部分硫化物电解质相媲美。镧的低电负性和梯度界面层的形成赋予了LaCl3基电解质对锂金属良好的稳定性,组装的锂金属对称电池以0.2 mA cm-2的电流密度和1 mAh cm-2的面容量可稳定循环5000小时以上。基于此,组装的全固态锂金属原型电池无需负极垫层和正极包覆等额外的常用界面稳定手段,即可实现室温下百圈以上的循环。此外,团队成员还发现,镧系金属卤化物可容纳大量异种非镧系金属元素,且在此状态下仍能保持快离子传输的UCl3晶型结构特征。这个性质赋予了镧系金属卤化物框架极强的可拓展性,使镧系金属卤化物固态电解质LixMyLnzCl3在未来通过合理的元素设计,具备实现更高界面稳定性、更快离子传导和更廉价原料成本的巨大潜力。具备UCl3晶型特征结构的镧系金属卤化物固态电解质LixMyLnzCl3将成为如硫化物中LGPS结构、氧化物中LLZO结构的一个全新的电解质家族。
        中国科学技术大学殷逸臣(博士后)、杨竞天(硕士生)、罗锦达(硕士生)和浙江工业大学卢功勋(博士)为本文的共同第一作者;中国科学技术大学姚宏斌教授、李震宇教授与浙江工业大学陶新永教授为本文的共同通讯作者。本工作得到中科院先导计划、国家自然科学基金委、稀土资源利用国家重点实验室开放基金、中国科学技术大学原创探索项目、中国科学技术大学“双一流”专项基金的资助。
       本工作特别致谢北京大学深圳研究院肖荫果研究员、黄中垣博士,合肥微尺度物质科学国家研究中心的龚科老师、汪琳俊老师,高德英特(北京)科技有限公司应用科学家鞠焕新博士和上海同步辐射光源的文闻研究员在表征和分析方面的大力帮助与支持。合肥国轩高科动力能源有限公司的吴叶超、中国科学技术大学本科生王建平参与完成了本工作。
       论文链接:doi: 10.1038/s41586-023-05899-8
       文章来源:中科大
       姚宏斌,男,中国科学技术大学教授。1983年12 月生于重庆黔江。2011年在合肥微尺度国家实验室获得博士学位,其后在美国斯坦福大学从事博士后研究工作,主要从事仿生微纳结构复合材料和高性能锂离子电池电极材料的研究。已在Nat. Commun.,J. Am. Chem. Soc., Angew. Chem. Int. Ed., Adv. Mater., Nano Lett., Energy
        李震宇,男,中国科学技术大学教授、博士生导师。1999和2004年分别获得中国科学技术大学物理学学士和物理化学博士学位。2004-2007年先后在美国马里兰大学和加州大学欧文分校从事博士后研究。2006年入选全国百篇优秀博士学位论文作者,2015年获中国化学会青年化学奖,2019年获国家杰出青年基金资助。研究领域为理论与计算化学,主要通过电子结构计算与分子模拟来研究材料物性和生长反应机理。在包括Phys. Rev. Lett.、J. Am. Chem. Soc.、Angew. Chem. Int. Ed.在内的国际学术期刊上发表论文170余篇,SCI引用7400余次,H因子为48。
          陶新永教授,现任浙江工业大学材料学院副院长。曾获国家“优青”(2017年)、教育部“新世纪优秀人才”(2012年)、浙江省“钱江学者”特聘教授(2009年)等人才项目。2007年获得浙江大学博士学位(导师:张孝彬教授),2007-2008年在美国南卡罗莱纳大学机械工程系从事博士后研究(导师:李晓东教授),2014-2015年赴美国斯坦福大学进行访问交流(导师:崔屹教授)。2008年入职浙江工业大学以来,一直从事碳基储能材料(二次电池材料)相关研究。现因工作需要,面向国内外招聘教师和师资博士后2-3名。

  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。
回复

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-4-16 19:23 , Processed in 0.106394 second(s), 39 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表