找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 1096|回复: 0
打印 上一主题 下一主题

[材料资讯] 理化所刘静应邀撰文评述液态金属印刷电子学从概念提出到工业化发展历程

[复制链接]

141

主题

151

帖子

197

积分

注册会员

Rank: 2

积分
197
跳转到指定楼层
楼主
发表于 2021-2-27 10:09:32 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
近期,中科院理化所液态金属与低温生物医学研究中心应Cell旗下期刊iScience之邀,发表了题为“Pervasive liquid metal printed electronics: From concept incubation to industry (10.1016/j.isci.2020.102026)”的展望文章,评述了液态金属印刷电子学从概念提出到产业化发展的历程,总结了这一新兴领域有里程碑意义的核心材料、打印技术与代表性装备,剖析了制约产业化的关键因素并予以展望。文章第一作者为博士生陈森,通讯作者为刘静研究员。
  众所周知,人类对技术的终极追求就是制造一切,这其中的关键在于功能制造,而电子器件又首当其冲,可以说在现代文明中扮演了至关重要的作用。迄今已有的电子制造方法大多昂贵、耗时、耗材及耗能,不易实现个性化和普及化。正是在这样的背景下,中科院理化所于2010年前后开创性提出了具有领域突破性意义的液态金属印刷电子学思想(图1),相继发明了一系列全新概念的制造装备和电子材料,建立了有关基本原理和方法(图2),申请了一批底层核心技术专利,出版了均为国内外首部的前沿著作:《液态金属印刷电子学》、《液态金属3D打印技术:从原理到应用》以及《中国液态金属工业发展战略研究报告:一个全新工业的崛起》等,推动了一批工业化成果的验证乃至规模化市场产品的应用,有关成果一经问世便持续引发国内外业界广泛重视。时至今日,全球范围内液态金属印刷电子学的研发态势已是此起彼伏,大量学术论文短时间内呈爆发式增长,彰显了一个新兴领域的兴盛和繁荣。总的说来,这一全新的电子制造模式,打破了传统技术的瓶颈和壁垒,使得在低成本下快速、随意地制作个性化电子电路特别是柔性功能器件成为现实,预示着一个人人触手可及的电子制造时代的到来,一个普惠型电子工程学产业也得以应运而生。
图1. 未来可望无处不在的普惠型液态金属印刷电子
图2. 液态金属印刷电子学代表性典型材料、技术及装备
图3. 以蝴蝶翅膀形状隐喻液态金属印刷电子产业的腾飞情形
图4. 液态金属印刷电子学技术的典型应用场景
图5. 液态金属印刷电子及产业从概念孕育到工业化实践的发展路径
  然而,液态金属印刷电子学从起初的萌芽到最终实现产业化,却是一个颇为漫长的过程。其最早酝酿可追溯至本世纪初,当时,中科院理化所科研人员在尝试采用液态金属冷却计算机芯片时发现,不经意间飞溅到电脑屏幕上的金属液滴很难被擦拭干净,这一体验并不让人感到愉悦。然而随着时间的推移,正如不少科学发现和技术发明均源于偶然事件一样,这种液态金属可在室温下沉积于特定基底的现象启发了科学家将其用于电路印刷,不过由于缺乏先例,团队仅在液态金属涂敷问题的摸索上,就花费了多年时间,直至随着关键性润湿机理的揭示和认识,才迎来了从材料到系统乃至应用技术的突破。其中的一些标志性进展如:液态金属印刷电子学与梦之墨概念的系统论述(Zhang et al., Frontiers in Energy, 6: 311-340, 2012)、纸上可印刷式温度传感器(Li et al, Applied Physics Letters, 101: 073511, 2012)、柔性电路直写技术(Gao et al., PLoS ONE,7: e45485, 2012)、皮肤电子直写技术(Yu et al., PLoS ONE, 8: e58771, 2013)、透明导电薄膜技术(Mei et al., Applied Physics Letters, 102: 041509, 2013)、液态金属3D混合电子打印方法与装备(Zheng et al., Scientific Report, 3: 1786, 2013)、可在任意表面制造电子的液态金属雾化喷墨打印技术(Zhang et al., Appl. Phys. A., 116: 1091-1097, 2014)、世界首台液态金属电子电路打印机的发明及研制(Zheng et al., Sci. Rep., 4: 4588, 2014)、液态金属液相3D打印(Science China Tech. Sci., 57: 1721-1728, 2014)、液态金属悬浮3D打印(Adv. Mater. Technol., 1700173, 2017)、液态金属双转印技术(Wang et al., Advanced Materials, 27: 7109-7116, 2015)、秒级制造电路的液态金属智慧印刷技术(Science China Materials, 62: 982-994, 2019)、液态金属薄膜晶体管与集成电路全打印(Science China Info. Sciences, 62: 202403, 2019)、液态金属二维半导体材料与器件直接印刷(Physica Status Solidi-Rapid Research Letters, 13: 1900271, 2019)等。
  上述许多工作由于鲜明的首创性,一经发表就在国内外引发较大反响,受到诸多国际知名科学杂志、新闻或专业网站如MIT Technology Review、IEEE Spectrum、ASME Today、Phys.org、Chemistry World、National Geographic、Asian Scientist Magazine、Geek、Desktop Engineering、Discover、CCTV、Fox News等的专题报道。业界普遍认为,“找到了室温下直接制造电子的方法,就意味着打开了极为广阔的应用空间乃至通过家用打印机制造电子器件的大门”。有关成果先后入围2014两院院士评选中国十大科技进展新闻、美国科技界创新奥斯卡2015 R&D 100 Awards Finalists、2015中关村十大科技创新成果、2016美国《Popular Science》(中文版)全球100项最佳科技创新奖、2019中国科学院科技成果在京转化先进团队特等奖等。随着一系列市场产品如液态金属电子手写笔、液态金属电子墨水、液态金属桌面电子电路打印机、液态金属智慧印刷设备、液态金属3D打印设备以及诸多液态金属功能器件的陆续问世,液态金属印刷电子产业就如图3所示那样得以插上腾飞的翅膀,有关应用陆续进入社会的方方面面(图4),正在改变着人们的生产生活方式。
  在此篇展望文章中,作者们还特别对影响和制约液态金属印刷电子产业发展的关键因素进行了剖析和提炼,绘制出如图5所示的旨在反映这一领域从概念孕育到工业化实践的路径发展曲线,揭示了产业推进中必不可少的波动性和渐进式特点,指出学术界、工业界乃至社会各界有必要对此规律予以明晰洞察,以便既能理性看待新产业的爆发式增长特点,也能坦然面对间或出现的困境和挫折,从而对新兴领域保持乐观进取的态度,乃至成为新产业的助力者和推动者。比如,液态金属印刷电子自提出以来,首先经历了一个原始创新密集涌现的技术萌发期(Innovation Trigger),此阶段同时吸引了大量的公众关注。随着关注达到顶峰,工业化阶段迎来“期望之巅”(Peak of Inflated Expectations),此时人们对于产业化的实现速度有着超乎寻常的期待。然而由于不可预见且难以避免的问题,液态金属印刷电子产业化之路并非一帆风顺,这种期待的落空会引发公众的关注度转而降低,从而导致工业化阶段进入“幻灭低谷期”(Trough of Disillusionment)。此阶段是对新技术产业化的重要考验,许多新兴企业都折戟于此。值得指出的是,液态金属印刷电子技术因其所见即所得的独特优势而在教育市场上始终受到关注和认可,这为其后产业化的稳定增长提供了有力支持。随着研究不断推进、产业化得到验证以及新产线的建立,液态金属印刷电子获得了长足发展,产业化进入“复苏期”(Slope of Enlightenment)。未来,有理由相信随着技术的持续成熟和杀手级产品的不断应用,这一领域的产业化还将迎来辉煌的“高峰期”(Plateau of Productivity)。
  此次受邀于iScience就“液态金属印刷电子”发表前瞻性展望,反映了国际学术界对中科院理化所及其合作团队开创性工作的认可。此篇前瞻性评述的发表,可望及时有效的推动相应基础研究和应用的繁荣,从而引导产业化持续稳步健康发展。
  以上研究得到国家自然科学重点基金、中国科学院院长基金及前沿项目等支持。
  论文网址:https://www.cell.com/iscience/fulltext/S2589-0042(20)31223-2


       文章来源:理化所
       刘静,男,1969年4月生。1999年7月起历任中国科学院理化技术研究所研究员(百人计划)、双聘研究员、低温生物医学工程学北京市重点实验室主任;2008年8月起任清华大学医学院生物医学工程系教授(百人计划)。清华大学燃气轮机专业工学士、现代应用物理专业理学士(1992年7月)、工程热物理专业工学博士(1996年2月);清华大学经管学院高级经理工商管理精选课程结业(2003.04—2005.05)。曾为清华大学热能工程系助教、讲师,美国Purdue大学博士后,MIT高级访问学者。2003年国家杰出青年科学基金获得者;曾先后荣获中国青年科技奖、茅以升科学技术奖—北京青年科技奖、美国机械工程师学会会刊<<电子封装学报>>年度唯一最佳论文奖等十余项奖励。出版有9部原创性跨学科前沿著作,均产生重要影响,其中之一已印刷5次(含台湾繁体字版);发表15篇应邀著作章节,期刊论文300余篇,国际会议论文80余篇;申请发明专利100余项(已获授权60余项)。

  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。

本帖被以下淘专辑推荐:

分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖1
回复

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-4-25 08:29 , Processed in 0.086794 second(s), 39 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表