找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 723|回复: 2
打印 上一主题 下一主题

[专家学者] 中国科学技术大学吴思

[复制链接]

139

主题

178

帖子

246

积分

中级会员

Rank: 3Rank: 3

积分
246
跳转到指定楼层
楼主
发表于 2019-11-3 10:27:27 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
吴思,博士,中国科学技术大学教授。于2005年在中国科学技术大学高分子科学与工程系获得学士学位,之后在中德联合培养博士生项目的资助下在德国马普高分子所和中国科学技术大学进行研究,并于2010年获得博士学位。2010年到2012年,在德国马普高分子所做博士后。2012年到2018年,在德国马普高分子所担任课题组长(Group Leader),独立领导一个课题组开展光响应高分子材料的研究。于2018年3月回到中国科学技术大学工作,曾主持过5项德国的科研基金,他指导的博士生/博士后已经有3人成为教授,多人成为副教授和讲师。吴思教授作为通讯作者在Nature Chemistry, Nature Communications, Advanced Materials, Angewandte Chemie International Edition等杂志上发表了多篇论文。他发表的文章被Advanced Science News, Chemistry Views, Materials Views China, European Coatings, Materials Gate等作为亮点专栏重点报道。因为在光响应高分子方面的研究,他于2016年在丹麦被授予了“欧洲华人十大科技领军人才”称号。


吴思 博士 教授
高分子科学与工程系
Email: siwu@ustc.edu.cn
ResearcherID: D-8548-2014
Google Scholar: vNWidnYAAAAJ
个人主页:staff.ustc.edu.cn/~siwu/

研究方向:光响应高分子材料
吴思教授围绕光响应的高分子和软物质开展基础研究。他的基本研究理念是用光去调节高分子和软物质的结构与性能。吴思课题组的研究内容包括合成新的光响应高分子材料,并探索这些光响应材料在生物医学、能源、信息、功能涂层、自修复材料、和微纳米结构制备等方面的应用。目前研究的光响应材料包括偶氮苯高分子、含钌配合物的金属有机高分子、和上转换纳米粒子复合材料等。课题组的研究目标是理解光响应高分子的结构、动态和性能之间的关系,解决光响应高分子材料的基本科学问题并填补基础研究和应用之间的这条鸿沟。

招生招聘
实验室招聘高分子科学、有机合成、金属配合合成、材料化学、纳米材料、生物医学材料背景的特任副研究员、博士后,同时欢迎具有上述背景的本科生到实验室做毕业论文和攻读博士学位。

研究论文

2018
  • D. Wang, F. Schellenberger, J. T. Pham, H.-J. Butt, S. Wu*, Chem. Commun. 2018, in press, DOI: 10.1039/C8CC00770E
  • P. Weis, W. Tian*, S. Wu*, “Photoinduced Liquefaction of Azobenzene-Containing Polymers”, Chem. Eur. J. 2018, in press, DOI: 10.1002/chem.201704162. (Invited Minireview)
  • A. Pipertzis, A. Hess, P. Weis, G. Papamokos, K. Koynov, S Wu*, G. Floudas*, “Multiple Segmental Processes in Polymers with cis and trans Stereoregular Configurations”, ACS Macro Lett. 2018, 7, 11.
  • W. Sun, X. Zeng, S. Wu*, “Photoresponsive ruthenium-containing polymers: potential polymeric metallodrugs for anticancer phototherapy”, Dalton Trans. Dalton Trans., 2018, 47, 283. (Invited Perspective)


2017
  • H. Zhou, C. Xue, P. Weis, Y. Suzuki, S. Huang, K. Koynov, G. K. Auernhammer, R. Berger, H.-J. Butt, S. Wu*, “Photoswitching of Glass Transition Temperatures of Azobenzene-Containing Polymers Induces Reversible Solid-to-Liquid Transitions”, Nature Chemistry 2017, 9, 145. (Highlighted by several media)
  • W. Sun, S. Li, B. Häupler, J. Liu, S. Jin, W. Steffen, U. S. Schubert,  H.-J. Butt, X.-J. Liang,* S. Wu*, “An amphiphilic ruthenium polymetallodrug for combined photodynamic therapy and photochemotherapy in vivo”, Adv. Mater. 2017, 29, 1603702. (Highlighted by AdvancedScienceNews.com) (Inside back cover)
  • A. K. Saydjari, P. Weis, S. Wu*, “Spanning the Solar Spectrum: Azopolymer Solar Thermal Fuels for Simultaneous UV and Visible Light Storage”, Adv. Energy Mater. 2017, 7, 1601622. (Cover)
  • D. Wang, M. Wagner, A. K. Saydjari, J. Mueller, S. Winzen, H.-J. Butt, S. Wu*, “A photoresponsive orthogonal supramolecular complex based on host-guest interactions”, Chem. Eur. J. 2017, 23, 2628.
  • S. Wu*, J. Blinco*, C. Barner-Kowollik*, “Near-Infrared Photoinduced Reactions Assisted by Upconverting Nanoparticles”, Chem. Eur. J. 2017, 23, 8325. (Invited Perspective)
  • S. Wu*, H.-J. Butt, “Near-infrared photochemistry at interfaces based on upconverting nanoparticles”, Phys. Chem. Chem. Phys. 2017, 19, 23585. (Invited Perspective)
  • W. Sun, R. Thiramanas, L. Slep, X. Zeng, V. Mailänder*, S. Wu*, “Photoactivation of anticancer Ru complexes in deep tissue: How deep can we go?” Chem. Eur. J. 2017, 23, 10832.
  • Z. Chen, R. Thiramanas, M. Schwendy, C. Xie, S. H. Parekh, V. Mailänder,* S. Wu*, “Upconversion Nanocarriers Encapsulated with Photoactivatable Ru Complexes for Near-Infrared Light-Regulated Enzyme Activity”, Small 2017, 13, 1700997.
  • P. Weis, S. Wu*, “Light-Switchable Azobenzene-Containing Macromolecules: From UV to Near Infrared”, Macromol. Rapid Commun. 2017, 2017, 1700220. (Invited Feature Article)
  • Z. Chen, D. Oprych, C. Xie, C. Kutahya, S. Wu*, B. Strehmel*, “Upconversion-Nanoparticle-Assisted Radical Polymerization at λ = 974 nm and the Generation of Acidic Cations”, ChemPhotoChem 2017, 1,499.
  • M. Hu*, D. Ma, Y. Cheng, C. Liu, Z. Zhang, Y. Cai, S. Wu, R. Wang, “Synergistically enhanced upconversion luminescence in Li+-doped core-shell-structured ultrasmall nanoprobes for dual-mode deep tissue fluorescence/CT imaging”, J. Mater. Chem. B 2017, 5, 2662.


2016
  • P. Lederhose, Z. J. Chen, R. Müller, J. P. Blinco*, S. Wu*, C. Barner-Kowollik*, “Near-Infrared Photoinduced Coupling Reactions Assisted by Upconversion Nanoparticles”, Angew. Chem. Int. Ed. 2016, 55, 12195. (Hot Paper, highlighted by Chemistry Views)
  • S. Wu*, H.-J. Butt*, “Near-Infrared-Sensitive Materials Based on Upconverting Nanoparticles”, Adv. Mater. 2016, 28,1208. (highlighted by Materials Views China)
  • Z. Chen, Y. Xiong, R. Etchenique, S. Wu*, “Manipulating pH using near-infrared light assisted by upconverting nanoparticles”, Chem. Commun. 2016, 52, 13959. (back cover)
  • Y. Xiong, Z. Chen, H. Wang, L.-M. Ackermann, M. Klapper, H.-J. Butt, S. Wu*, “An autonomic self-healing organogel with a photo-me
  • P. Weis, D. Wang, S. Wu*, “Visible-Light-Responsive Azopolymers with Inhibited π-π Stacking Enable Fully Reversible Photopatterning”, Macromolecules 2016, 49, 6368.
  • W. Sun, M. Parowatkin, W. Steffen, H.-J. Butt, V. Mailänder, S. Wu*, “Ruthenium-Containing Block Copolymer Assemblies: Red Light-Responsive Metallopolymers with Tunable Nanostructures for Enhanced Cellular Uptake and Anticancer Phototherapy”, Adv. Healthcare Mater.2016, 5, 467. (cover)
  • D. Wang, S. Wu*, “Red-Light-Responsive Supramolecular Valves for Photocontrolled Drug Release from Mesoporous Nanoparticles”, Langmuir, 2016, 32, 632.
  • S. H. C. Askes, W. Pomp, S. L. Hopkins, A. Kros, S. Wu, T. Schmidt, S. Bonnet*, “Imaging upconverting polymersomes in cancer cells: biocompatible anti-oxidants brighten triplet-triplet annihilation upconversion”, Small 2016, 12, 5579.
  • J. Hodak, Z. Chen, S. Wu, R. Etchenique*, “Multiphoton Excitation of Upconverting Nanoparticles in Pulsed Regime”, Analytical Chemistry 2016, 88, 1468.


2015
  • Z. Chen, S. He, H.-J. Butt, S. Wu*, “Photon Upconversion Lithography: Patterning of Biomaterials Using Near-Infrared Light”, Adv. Mater. 2015, 27, 2203.
  • S. He, K. Krippes, S. Ritz, Z. Chen, A. Best, H.-J. Butt, V. Mailänder, S. Wu*, “Ultralow-Intensity Near-Infrared Light Induces Drug Delivery by Upconverting Nanoparticles”, Chem. Commun. 2015, 51, 431.
  • Z. Chen, W. Sun, H.-J. Butt, S. Wu*, “Upconverting-Nanoparticle-Assisted Photochemistry Induced by Low-Intensity Near-Infrared Light: How Low Can We Go?”, Chem. Eur. J. 2015, 21, 9165.
  • D. Wang, M. Wagner, H.-J. Butt, S. Wu*, “Supramolecular hydrogels constructed by red-light-responsive host-guest interactions for photo-controlled protein release in deep tissue” Soft Matter 2015, 11, 7656.
  • Y. Zhou, D. Wang, S. Huang, G. Auernhammer, Y. He, H.-J. Butt, S. Wu*, “Reversible Janus Particle Assembly via Responsive Host–Guest Interactions”,Chem. Commun. 2015, 51, 2725.


2011-2014
  • X. Wang, R. Berger, J. I. Ramos, T. Wang, K. Koynov, G. Liu*, H.- J. Butt,   S. Wu*, “Nanopatterns of Polymer Brushes for Understanding Protein Adsorption on the Nanoscale”, RSC Adv. 2014, 4, 45059.
  • S. Wu*, C. Bubeck, “Macro- and Microphase Separation in Block Copolymer Supramolecular Assemblies Induced by Solvent Annealing”, Macromolecules 2013, 46, 3512.
  • X. Deng, M. Paven, P. Papadopoulos, M. Ye, S. Wu, T. Schuster, M. Klapper, D. Vollmer*, H.-J. Butt*, “Solvent-Free Synthesis of Microparticles on Superamphiphobic Surfaces” Angew. Chem. Int. Ed. 2013, 52, 11286.
  • S. Wu*, J. Huang*, S. Beckemper, A. Gillner, K. Wang, C. Bubeck, “Block copolymer supramolecular assemblies hierarchically structured by three-beam interference laser ablation”, J. Mater. Chem. 2012, 22, 4989.
  • S. Wu*, J. Huang*, “One-step fabrication of hierarchically ordered structures on photoresponsive azobenzene-containing polymers with phase masks” RSC Adv. 2012, 2, 12084.
  • X. Tian, S. Wu, Q. Zhang*, Zou, G. “Colorimetric Sensor for Fine Differentiation of Organic Solvents Based on Only One Kind of Polydiacetylene Coated on Polymer Optical Fiber”, IEEE Sens. J. 2012, 12, 1946.
  • S. Wu, L. Wang, A. Kroeger, Y. Wu, Q. Zhang*, C. Bubeck*, “Block Copolymers of PS-b-PEO Co-Assembled with Azobenzene-Containing Homopolymers and Their Photoresponsive Properties”, Soft Matter 2011, 7, 11535.
  • H. Li, S. Pang, S. Wu, X. Feng*, K. Müllen*, C. Bubeck*, “Layer-by-Layer Assembly and UV Photoreduction of Graphene-Polyoxometalate Composite Films for Electronics”, J. Am. Chem. Soc. 2011, 133, 9423.
  • Y. Wu, S. Wu, G. Zou, Q. Zhang*, “Solvent effects on structure, photoresponse and speed of gelation of a dicholesterol-linked azobenzene organogel”, Soft Matter 2011, 7, 9177.
  • Y. Wu, S. Wu, X. Tian, X. Wang, W. Wu, G. Zou, Q. Zhang*, “Photoinduced Reversible gel–sol Transitions of Dicholesterol-Linked Azobenzene Derivatives through Breaking and Reforming of van der Waals Interactions”, Soft Matter 2011, 7, 716.
  • J. Huang*, S. Beckemper, S. Wu, J. Shen, Q. Zhang, K. Wang, A. Gillner, “Light driving force for surface patterning on azobenzene-containing polymers”, Phys. Chem. Chem. Phys. 2011, 13, 16150.
  • X. Wang, Q. Yan, P. Chu, Y. Luo, Z. Zhang, S. Wu, L. Wang, Q. Zhang*, “Analysis on fluorescence of dual excitable Eu(TTA)3DPBT  in toluene solution and PMMA”,  J. Lumin. 2011, 131, 1719.


2007-2010
  • S. Wu, Q. Zhang*, C. Bubeck*, “Solvent Effects on Structure, Morphology and Photophysical Properties of an Azo Chromophore-Functionalized Polydiacetylene”, Macromolecules 2010, 43, 6142.
  • S. Wu, S. Duan, Z. Lei, W. Su, Z. Zhang, K. Wang, Q. Zhang*, “Supramolecular Bisazopolymers Exhibiting Enhanced Photoinduced Birefringence and Enhanced Stability of Birefringence for Four-Dimensional Optical Recording”, J. Mater. Chem. 2010, 20, 5202. (Highlighted by Chemical Technology)
  • S. Wu, J. Shen, J. Huang, Y. Wu, Z. Zhang, Y. Hu, W. Wu, W. Huang, K. Wang, Q. Zhang*, “Ag nanoparticle/azopolymer nanocomposites: in situ synthesis, microstructure, rewritable optically induced birefringence and optical recording”, Polymer 2010, 51, 1395.
  • J. Huang, S. Wu, S. Beckemper, A. Gillner*, Q. Zhang, K. Wang, “All-Optical Fabrication of Ellipsoidal Caps on Azobenzene Functional Polymers”, Optics Letters 2010, 35, 2711.
  • W. Wu, T. Wang, X. Wang, S. Wu, Y. Luo, X. Tian,  Q. Zhang*, “Hybrid Solar Concentrator with Zero Self-Absorption Loss”, Solar Energy 2010, 84, 2140.
  • J. Shen, S. Wu, J. Huang, Q. Zhang*, K. Wang, “Localized surface plasmon resonance effect on photo-induced alignment of films composed of silver nanoparticles and azopolymers with cyano or methyl substitutes on azobenzene moieties”, Thin Solid Films 2010, 518, 2128.
  • S. Wu, F. Shi, Q. Zhang*, C. Bubeck*, “Stable hydrogen bonding complexes of poly(4-vinylpyridine) and polydiacetylenes for photolithography and sensing”, Macromolecules 2009, 42, 4110.
  • S. Wu, L. Niu, J. Shen, Q. Zhang*, C. Bubeck*, “Aggregation-Induced Reversible Thermochromism of Novel Azo Chromophore-Functionalized Polydiacetylene Cylindrical Micelles”, Macromolecules 2009, 42, 362.
  • S. Wu, X. Yu, J. Huang, J. Shen, Q. Yan, X. Wang, W. Wu, Y. Luo, K. Wang, Q. Zhang*, “Optically controllable polarized luminescence from azopolymer films doped with a lanthanide complex”, J. Mater. Chem. 2008, 18, 3223.

  • W. Su, Y. Luo, Q. Yan, S. Wu, K. Han, Q. Zhang*, Y. Gu, Y. Li, “Photoinduced fusion of the micro-vesicles self-assembled from azobenzene-containing amphiphilic diblock copolymers”, Macromol. Rapid Commun. 2007, 28, 1251.
  • S. Wu, Y. Sun, X. Wang, W. Wu, X. Tian , Q. Yan, Y. Luo, Q. Zhang*, “Radiative Properties of Rare Earth Complexes/Silver Nanoparticles Nanocomposites”, J. Photochem. Photobiol. A: Chem. 2007, 191, 97.
  • S. Wu, P. He, J. Guan, B. Chen, Y. Luo, Q. Yan, Q. Zhang*, “Effects of Synergetic Ligands on Structure and Fluorescence Properties of Langmuir and Langmuir-Blodgett Films Containing Eu(TTA)3nL”, J. Photochem. Photobiol. A: Chem. 2007, 188, 218.
  • Y. Luo, Q. Yan, S. Wu, W. Wu, Q. Zhang*, “Inter- and Intra-molecular Energy Transfer during Sensitization of Eu(DBM)3Phen Luminescence by Tb(DBM)3Phen in PMMA”, J. Photochem. Photobiol. A: Chem. 2007, 191, 91.






  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖
回复

使用道具 举报

139

主题

178

帖子

246

积分

中级会员

Rank: 3Rank: 3

积分
246
沙发
 楼主| 发表于 2019-11-3 10:28:26 | 只看该作者
报告题目:光控制偶氮苯高分子玻璃化转变温度导致可逆固液转变
报告人:吴思 教授
时间:2019年06月21日(周五)上午9:30—10:10
地点:桂林理工大学屏风校区教一楼附楼1301A


思教授简介:
吴思博士是中国科学技术大学教授,于2005年在中国科学技术大学高分子科学与工程系获得学士学位,之后在中德联合培养博士生项目的资助下在德国马普高分子所和中国科学技术大学进行研究,并于2010年获得博士学位。2010年到2012年,在德国马普高分子所做博士后。2012年到2018年,在德国马普高分子所担任课题组长(Group Leader),独立领导一个课题组开展光响应高分子材料的研究。于2018年3月回到中国科学技术大学工作,曾主持过5项德国的科研基金,他指导的博士生/博士后已经有3人成为教授,多人成为副教授和讲师。吴思教授作为通讯作者在Nature Chemistry, Nature Communications, Advanced Materials, Angewandte Chemie International Edition等杂志上发表了多篇论文。他发表的文章被Advanced Science News, Chemistry Views, Materials Views China, European Coatings, Materials Gate等作为亮点专栏重点报道。因为在光响应高分子方面的研究,他于2016年在丹麦被授予了“欧洲华人十大科技领军人才”称号。

回复 支持 反对

使用道具 举报

160

主题

194

帖子

307

积分

中级会员

Rank: 3Rank: 3

积分
307
板凳
发表于 2020-9-3 09:59:51 | 只看该作者
光致固液转变高分子是指可以在光的刺激下发生化学反应,并实现固态和液态之间的可逆转变的高分子。这种转变是源于光化学反应引起材料化学结构的变化,从而引起的材料性质和宏观状态的改变。偶氮苯是一种能发生光致可逆顺反异构光响应小分子,其反式和顺式结构具有不同的熔点(Tm)。而偶氮苯高分子(含有偶氮苯基团的高分子)的顺式结构和反式结构具有不同的玻璃化转变温度(Tg)。通过分子设计可以合成反式和顺式结构的Tg分别高于和低于室温的偶氮苯高分子。在紫外光照下,反式偶氮苯高分子固体异构成顺式结构的液体;而顺式偶氮苯高分子在可见光照或者加热下回复至反式,实现可逆固液转变。
       中国科学技术大学吴思课题组对近些年来基于偶氮苯高分子的光致固液转变的研究工作进行了总结,讨论了偶氮苯高分子的光致固液转变机理及设计原则。由于光具有高的时空分辨率,因此相较于传统的液化手段——加热,光照能够更为精准地实现局部区域的液化。专论对光致可逆固液转变高分子在自修复材料、黏合剂、光致驱动器、光控微流管以及转印和压印等领域的应用进行了介绍。目前,光致固液转变高分子的研究才处于起步阶段。开发能够实现可见光和近红外光响应的光致固液转变高分子对进一步扩大其应用范围具有重要意义。
        上述工作以题为“光致固液转变高分子”专论形式发表在《高分子学报》2020年第10期(高分子学报, 2020,51(10): 1130-1139, doi: 10.11777/j.issn1000-3304.2020.20112),通讯作者是中国科学技术大学吴思教授。

回复 支持 反对

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-4-20 01:33 , Processed in 0.091530 second(s), 37 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表