找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 1238|回复: 0

毛河光课题组Nature:获得分子氢第四相晶体学信息

[复制链接]

2

主题

2

帖子

14

积分

新手上路

Rank: 1

积分
14
发表于 2019-9-28 09:10:59 | 显示全部楼层 |阅读模式
氢的金属化问题一直是高压科学的焦点和热点,但是研究者及关注者往往仅注重金属氢是否被发现,而在一定程度上忽略了对金属氢进行准确表征的重要性。近日,由北京高压科学研究中心(简称高科)的毛河光院士领导的科研小组,与国外科研院校的科学家通力合作,通过超高压技术以及同步辐射X射线衍射相关技术的自主研发,采用金刚石对顶砧技术首次在两百二十万个大气压以上实现了对固态氢第IV相的晶体结构精确测量。破解了长期困扰高压氢研究中最基本最亟需解决的技术难题,将此前法国科学家在此类实验上保持的压力记录提高了一倍,为今后直接测量超高压下固态氢以至金属氢的晶体结构提供一个切实可行的技术手段。相关成果发表于国际顶级学术期刊《自然》上。

分子氢第四相晶体学

分子氢第四相晶体学
       北京高压科学研究中心毛河光团队在Nature在线发表题为”Ultrahigh-pressure isostructural electronic transitions in hydrogen“的研究论文,固态氢在高达254GPa的压力下进行了单晶X射线衍射研究,揭示了从I相到III相和IV相的转变的晶体学性质。总之,通过克服一系列障碍,室温下H2的SXRD研究压力范围翻了一番,达到254 GPa,涵盖了I,III和IV相。 SXRD数据表明,H2中的这些高压转变不是由hcp结构的主要晶体学变化引起的,并且除了c / a比严重变形(各向异性增加)以外,其余均保持同构。随着下一代同步加速器纳米探针的问世,该工作为在更高压力-温度范围内使用直接SXRD研究探索氢的相图提供了机会。
       最后,英国剑桥大学Bartomeu Monserrat等人在Nature在线发表题为"X-rays glimpse solid hydrogen’s structure"的点评文章,系统盘点了该研究成果,指出在未来几年中,实验可能会集中在更高的压力上。 但是,对于X射线技术研究元素变成原子和金属的压力将是一个挑战。 研究宇宙中最轻和最丰富的元素的激动人心的时代即将来临。
       在过去的40年中,已报告了分子氢的七个高压固相-即,相I,II,II'(氘),III,IV,IV'和V—所有这些都是基于光学变化,例如拉曼光谱及红外光谱中的峰展宽,峰分裂和强度变化。第三和第四阶段显示出最大的光谱变化,是实验研究和理论解释的重点。
       在室温下,I相在5 GPa至190 GPa范围内是稳定的,自由旋转的氢分子形成hcp晶体结构,这是通过单晶X射线衍射(SXRD)确定的。II相是低温(<130 K)相,其拉曼和红外光子发生微小变化,显示出hcp晶格上氢分子的量子取向顺序。III相出现在150 GPa以上(低温),在拉曼光谱,红外振动子和旋转子中主要发生移动,分裂和强化,这被解释为经典取向氢分子的有序化,晶体结构保持接近hcp。
       与阶段I,II和III的单一振动模式相比,在室温同时压强高于220 GPa的条件下发现的阶段IV表现出两种不同的振动模式,其压力相关性变宽,并且第一振动子出现陡峭的频率下降。从理论上讲,对于相IV,提出了具有新颖的交替分子层和类石墨烯层的基本结构变化。在室温下同时在较高的压力下,据报告相IV'(270 GPa)和相V(325 GPa)相较于相IV在拉曼光谱中有相对细微的改变,它们的结构略有改变。自发现氢以来,关键阶段IV的直接晶体学信息一直是氢研究的重点,但尚未发表成功的结果。
       金刚石砧盒(DAC)与同步加速器X射线衍射(XRD)结合使用是确定100 GPa以上氢的晶体结构的唯一可行方法。在高达200 GPa的压力下对氢气应用XRD提出了许多艰巨的挑战。 X射线散射能力与原子序数的平方成正比。原子数为1时,氢具有最低的散射能力,由于其极高的可压缩性,XRD峰移动到较小的d间距以及极强的德拜-华勒效应(Debye-Waller effect),氢在高压下会进一步减小。许多研究超高压氢的实验小组一直在努力将氢XRD推至更高的压力,但障碍是巨大的。在过去十年中进行的数百次实验以破碎的钻石结束,而没有可发布的结构信息。
        对于该研究,固态氢在高达254GPa的压力下进行了单晶X射线衍射研究,揭示了从I相到III相和IV相的转变的晶体学性质。在压缩下,氢分子保留在六方密堆积(hcp)晶格结构中,伴随各向异性的单调增加。此外,进入阶段IV时,晶胞体积的压力依赖性减小表现出斜率变化,表明是二阶等构相转变。结果表明,外来两组分原子氢的前体可能由高度扭曲的hcp布里渊区和分子对称性断裂引起的电子跃迁组成。
        总之,通过克服一系列障碍,室温下H2的SXRD研究压力范围翻了一番,达到254 GPa,涵盖了I,III和IV期。SXRD数据表明,H2中的这些高压转变不是由hcp结构的主要晶体学变化引起的,并且除了c / a比严重变形(各向异性增加)以外,其余均保持同构。随着下一代同步加速器纳米探针的问世,该工作为在更高压力-温度范围内使用直接SXRD研究探索氢的相图提供了机会。

https://www.nature.com/articles/s41586-019-1565-9

       金属氢是液态或固态氢在上百万大气压的高压下变成的导电体。导电性类似于金属,故称金属氢。 金属氢是一种高密度、高储能材料,之前的预测中表明,金属氢是一种室温超导体。金属氢内储藏着巨大的能量,比普通TNT炸药大30─40倍。2017年1月26日, 《科学》杂志报道哈佛大学实验室成功制造出金属氢 。2017年2月22日,由于操作失误,这块地球上唯一的金属氢样本消失了。氢是人们最熟悉的化学元素。它在常温下是一种气体,在低温下可以成为液体,在温度降到零下259℃时即为固体。如果对固态氢施加几百万个大气压的高压,就可能成为金属氢。金属氢的出现是当代超高压技术创造的一项奇迹,它是高压物理研究领域中一项十分活跃的课题。氢在金属状态下,氢分子将分裂成单个氢原子,并使电子能够自由运动。在金属氢中,氢分子键断裂,分子内受束缚的电子被挤压成公有电子,这种电子的自由运动,使金属氢具有了导电的特性。因此,把氢制成金属,关键就是把电子从原子的束缚下解放出来,把共价键转变为金属键。

       毛河光,(Ho-Kwang;Mao),地球物理学家。美国国籍。生于中国上海。1963年获台湾大学地质学学士学位。1966年、1967年获美国罗切斯特大学硕士、博士学位。现任美国卡耐基研究所地球物理实验室和高压研究中心研究员。美国国家科学院院士(1993)。1989年获国际高压界最高奖——布里季曼奖。1976年与P.M.Bell合作改进的金刚石压腔(DAC)可达100 GPa(1Mbar),1978年又提高到173 GPa,即相当于地球外核的压力。1986年与徐济安、P.M.Bell合作创造了550 GPa的世界最高静压力的新纪录(已超过地心的压力)。除在高压技术(包括最高压力的获得和各种测量技术)领域居世界领先地位外,在超高压研究方面也取得了令人瞩目的成就:确定了MgO-FeO-SiO2系统在下地幔的温度压力条件下矿物的相关性;观察到二价铁在高温下的歧化反应,以及铁、镁的强烈分异现象;开展氢的金属化研究并观察到新的重要现象等。;1996年当选为中国科学院外籍院士。


  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。

本帖被以下淘专辑推荐:

  • · nature|主题: 151, 订阅: 2
回复

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-3-29 22:01 , Processed in 0.085305 second(s), 39 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表