找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 2640|回复: 3
打印 上一主题 下一主题

[专家学者] 武汉大学化学与分子科学学院物理化学研究所曹余良

[复制链接]

164

主题

178

帖子

210

积分

中级会员

Rank: 3Rank: 3

积分
210
跳转到指定楼层
楼主
发表于 2018-3-27 19:53:03 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
曹余良武汉大学化学与分子科学学院教授,珞珈特聘教授,博士生导师。主要研究领域是电化学能量储能与转换新体系。主持多项国家项目,包括国家重点研发计划“新能源汽车”领域课题、973子课题项目、国家自然科学基金面上项目等。在Nature Energy、Nature Nanotech.、Energy Environ. Sci.、Adv. Mater.、Nano. Lett.等国际顶尖学术期刊上发表论文200余篇,他引11000余次,h指数为58,ESI高被引论文18篇。获批发明专利8项,申请美国发明专利4项。相关工作获得2013年度国家技术发明二等奖,2012年获教育部“新世纪优秀人才支持计划”。

博士 , 教授
研究方向: 物理化学
联系电话: 027-68754526
Email: ylcao@whu.edu.cn
教育与研究经历
1997年7月于武汉大学化学系获学士学位,2003年6月于武汉大学化学系获博士学位。2002年9月在武汉大学化学与分子科学学院电化学研究所任教。
教学情况
物理化学(本科)、应用电化学(化院研究生)
承担项目与课题
主要研究方向是电化学能量储存与转化,内容涉及锂离子电池和钠离子电池体系。
近年来主持多项国家自然科学基金面上项目和重点研发计划等研究工作,包括主持“新能源汽车”领域重点研发计划课题项目“电池安全性和环境适应性研究”及参与“储能”领域重点研发课题项目“储钠材料设计、制备及储能机理研究”,并作为主要参加人员国家973计划课题《绿色二次电池新体系相关基础研究》项目子课题。
1.       方永进, 陈重学, 艾新平, 杨汉西, 曹余良*, 钠离子电池正极材料研究进展[J],物理化学学报, 33 (2017) 211-241.
2.       Y.Fang, L. Xiao, J. Qian, Y. Cao*, X. Ai, Y. Huang*, H. Yang*, 3D GrapheneDecorated NaTi2(PO4)(3) Microspheres as a Superior High-Rate andUltracycle-Stable Anode Material for Sodium Ion Batteries, Advanced EnergyMaterials, 6 (2016) 1502197.
3.       C.Fang, Y. Huang*, W. Zhang, J. Han, Z. Deng, Y. Cao*, H. Yang*, Routes to HighEnergy Cathodes of Sodium-Ion Batteries, Advanced Energy Materials, 6 (2016).
4.       Z.Zeng, X. Jiang, R. Li, D. Yuan, X. Ai, H. Yang, Y. Cao*, A Safer Sodium-IonBattery Based on Nonflammable Organic Phosphate Electrolyte, Advanced Science,3 (2016) 1600066.
5.       L.Xiao, Y. Cao*, W.A. Henderson, M.L. Sushko, Y. Shao, J. Xiao, W. Wang, M.H.Engelhard, Z. Nie, J. Liu*, Hard carbon nanoparticles as high-capacity,high-stability anodic materials for Na-ion batteries, Nano Energy, 19 (2016)279-288.
6.       Y.Gui, Y. Cao*, G. Li, X. Ai, X. Gao*, H. Yang*, A solar storable fuel cell withefficient photo-degradation of organic waste for direct electricity generation,Energy Storage Materials, 5 (2016) 165-170.
7.       J.S.Yang, L.F. Xiao, W. He, J.W. Fam, Z.X. Chen*, X.P. Ai, H.X. Yang, Y.L. Cao*,Understanding Voltage Decay in Lithium-Rich Manganese-Based Layered CathodeMaterials by Limiting Cutoff Voltage, ACS Applied Materials & Interfaces, 8(2016) 18867-18877.
8.       S.Qiu, X. Wu, L. Xiao*, X. Ai, H. Yang, Y. Cao*, Antimony NanocrystalsEncapsulated in Carbon Microspheres Synthesized by a Facile Self-CatalyzingSolvothermal Method for High-Performance Sodium-Ion Battery Anodes, Acs AppliedMaterials & Interfaces, 8 (2016) 1337-1343.
9.       H.Lu, L. Wu, L. Xiao, X. Ai, H. Yang, Y. Cao*, Investigation of the Effect ofFluoroethylene Carbonate Additive on Electrochemical Performance of Sb-BasedAnode for Sodium-Ion Batteries, Electrochimica Acta, 190 (2016) 402-408.
10.   X.Y. Jiang, X.M. Zhu, X.L.Liu, L.F. Xiao, X.P. Ai, H.X. Yang, Y.L. Cao*, Nanospherical-Like ManganeseMonoxide/Reduced Graphene Oxide Composite Synthesized by Electron BeamRadiation as Anode Material for High-Performance Lithium-Ion Batteries,Electrochimica Acta, 196 (2016) 431-439.
11.   X. Zhu, X. Jiang, X. Ai, H.Yang, Y. Cao*, TiO2 ceramic-grafted polyethylene separators for enhancedthermostability and electrochemical performance of lithium-ion batteries,Journal of Membrane Science, 504 (2016) 97-103.
12.   Y. Fang, L. Xiao, X. Ai, Y.Cao*, H. Yang, Hierarchical Carbon Framework Wrapped Na3V2(PO4)3 as a SuperiorHigh-Rate and Extended Lifespan Cathode for Sodium-Ion Batteries, AdvancedMaterials, 27 (2015) 5895-5900.
13.   Y. Fang, Q. Liu, L. Xiao*,X. Ai, H. Yang, Y. Cao*, High-Performance Olivine NaFePO4 Microsphere CathodeSynthesized by Aqueous Electrochemical Displacement Method for Sodium IonBatteries, Acs Applied Materials & Interfaces, 7 (2015) 17977-17984.
14.   L. Wu, H. Lu, L. Xiao*, X.Ai, H. Yang, Y. Cao*, Electrochemical properties and morphological evolution ofpitaya-like Sb@C microspheres as high-performance anode for sodium ionbatteries, Journal of Materials Chemistry A, 3 (2015) 5708-5713.
15.   L. Wu, H. Lu, L. Xiao, X.Ai, H. Yang, Y. Cao*, Improved sodium-storage performance of stannoussulfide@reduced graphene oxide composite as high capacity anodes for sodium-ionbatteries, Journal of Power Sources, 293 (2015) 784-789.
16.   Y.X. Wang, K.H. Shang, W.He, X.P. Ai, Y.L. Cao*, H.X. Yang, Magnesium-Doped Li1.2 Co0.13Ni0.13Mn0.54 O2for Lithium-Ion Battery Cathode with Enhanced Cycling Stability and RateCapability, Acs Applied Materials & Interfaces, 7 (2015) 13014-13021.
17.   D.D. Yuan, Y.X. Wang, Y.L.Cao*, X.P. Ai, H.X. Yang, Improved Electrochemical Performance ofFe-Substituted NaNi0.5Mn0.5O2 Cathode Materials for Sodium-Ion Batteries, AcsApplied Materials & Interfaces, 7 (2015) 8585-8591.
18.   X. Zhu, X. Jiang, X. Ai, H.Yang, Y. Cao*, A Highly Thermostable Ceramic-Grafted Microporous PolyethyleneSeparator for Safer Lithium-Ion Batteries, Acs Applied Materials &Interfaces, 7 (2015) 24119-24126.
19.   A Honeycomb-LayeredNa3Ni2SbO6: A High-Rate and Cycle-Stable Cathode for Sodium-Ion Batteries,Dingding Yuan, Xinmiao Liang, Lin Wu, Yuliang Cao,* Xinping Ai, Jiwen Feng andHanxi Yang*, Adv. Mater. 26 (2014) 6301.
20.   Mesoporous Amorphous FePO4Nanospheres as High-Performance Cathode Material for Sodium-Ion Batteries,Fang, Yongjin; Xiao, Lifen*; Qian, Jiangfeng; Ai, Xinping; Yang, Hanxi, Cao,Yuliang *, Nano Lett., 14 (2014) 3539.
21.   Sb-C nanofibers with longcycle life as an anode material for high-performance sodium-ion batteries, L.Wu, X.H. Hu, * J.F. Qian, F. Pei, F.Y. Wu, R.J. Mao, X.P. Ai, H.X. Yang, Y.L.Cao, * Energy & Environmental Science 7 (1) (2014) 323-328.
22.   D.D. Yuan, X.H. Hu*, J.F.Qian, F. Pei, F.Y. Wu, R.J. Mao, X.P. Ai, H.X. Yang, Y.L. Cao*, P2-typeNa0.67Mn0.65Fe0.2Ni0.15O2 Cathode Material with High-capacity for Sodium-ionBattery, Electrochimica Acta, 116 (2014) 300-305.
23.   Z.Q. Zeng, X.Y. Jiang, B.B.Wu, L.F. Xiao, X.P. Ai, H.X. Yang, Y.L. Cao*, Bis(2,2,2-trifluoroethyl)methylphosphonate: An Novel Flame-retardant Additive for Safe Lithium-ionBattery, Electrochimica Acta, 129 (2014) 300-304.
24.   L. Wu, H.Y. Lu, L.F. Xiao*,J.F. Qian, X.P. Ai, H.X. Yang, Y.L. Cao*, A tin(II) sulfide-carbon anodematerial based on combined conversion and alloying reactions for sodium-ionbatteries, Journal of Materials Chemistry A, 2 (2014) 16424-16428.
25.   B.B. Wu, X.Y. Jiang, L.F.Xiao, W.H. Zhang, J.X. Pan, X.P. Ai, H.X. Yang, Y.L. Cao*, Enhanced CyclingStability of Sulfur Cathode Surface-Modified by Poly(N-methylpyrrole),Electrochimica Acta, 135 (2014) 108-113.
26.   D.D. Yuan, W. He, F. Pei,F.Y. Wu, Y. Wu, J.F. Qian, Y.L. Cao,* X.P. Ai, H.X. Yang, * Synthesis andelectrochemical behaviors of layered Na0.67Mn0.65Co0.2Ni0.15O2 microflakes as astable cathode material for sodium-ion batteries, Journal of MaterialsChemistry A 1 (12) (2013) 3895-3899.
27.   L.F. Xiao, Y.L. Cao, * J.Xiao, B. Schwenzer, M.H. Engelhard, L.V. Saraf, Z.M. Nie, G.J. Exarhos, J. Liu,*Molecular structures of polymer/sulfur composites for lithium-sulfur batterieswith long cycle life, Journal of Materials Chemistry A 1 (33) (2013) 9517-9526.
28.   L. Wu, P. Pei, R.J. Mao,F.Y. Wu, Y. Wu, J.F. Qian, Y.L. Cao,* X.P. Ai, H.X. Yang, SiC-Sb-Cnanocomposites as high-capacity and cycling-stable anode for sodium-ionbatteries, Electrochimica Acta 87 (2013) 41-45.
29.   L. Wu, X.H. Hu, J.F. Qian,F. Pei, F.Y. Wu, R.J. Mao, X.P. Ai, H.X. Yang, Y.L. Cao*, A Sn-SnS-Cnanocomposite as anode host materials for Na-ion batteries, Journal ofMaterials Chemistry A 1 (24) (2013) 7181-7184.
30.   B.B. Wu, F. Pei, Y. Wu,R.J. Mao, X.P. Ai, H.X. Yang, Y.L. Cao*, An electrochemically compatible andflame-retardant electrolyte additive for safe lithium ion batteries, Journal ofPower Sources 227 (2013) 106-110.
31.   W. He, D.D. Yuan, J.F.Qian, X.P. Ai, H.X. Yang, Y.L. Cao*, Enhanced high-rate capability and cyclingstability of Na-stabilized layered Li-1.2 Co0.13Ni0.13Mn0.54 O-2 cathodematerial, Journal of Materials Chemistry A 1 (37) (2013) 11397-11403.
32.   Z.X. Chen, S. Qiu, Y.L.Cao*, J.F. Qian, X.P. Ai, K. Xie, X.B. Hong, H.X. Yang*, Hierarchical porousLi2FeSiO4/C composite with 2 Li storage capacity and long cycle stability foradvanced Li-ion batteries, Journal of Materials Chemistry A 1 (16) (2013)4988-4992.
33.   L.F. Xiao, Y.L. Cao, J.Xiao, W. Wang, L. Kovarik, Z.M. Nie, J. Liu*, High capacity, reversiblealloying reactions in SnSb/C nanocomposites for Na-ion battery applications,Chemical Communications 48 (27) (2012) 3321-3323.
34.   L.F. Xiao, Y.L. Cao*, J.Xiao, B. Schwenzer, M.H. Engelhard, L.V. Saraf, Z.M. Nie, G.J. Exarhos, J.Liu*, A Soft Approach to Encapsulate Sulfur: Polyaniline Nanotubes forLithium-Sulfur Batteries with Long Cycle Life, Advanced Materials 24 (9) (2012)1176-1181.
35.   W. He, J.F. Qian, Y.L.Cao*, X.P. Ai, H.X. Yang, Improved electrochemical performances ofnanocrystalline Li Li0.2Mn0.54Ni0.13Co0.13 O-2 cathode material for Li-ionbatteries, Rsc Advances 2 (8) (2012) 3423-3429.
36.   Z.X. Chen, S. Qiu, Y.L.Cao*, X.P. Ai, K. Xie, X.B. Hong, H.X. Yang*, Surface-oriented andnanoflake-stacked LiNi0.5Mn1.5O4 spinel for high-rate and long-cycle-lifelithium ion batteries, Journal of Materials Chemistry 22 (34) (2012)17768-17772.
37.   Z. Chen, M. Zhou, Y. Cao*,X. Ai, H. Yang, J. Liu*,  In Situ Generation of Few-Layer GrapheneCoatings on SnO2-SiC Core-Shell Nanoparticles for High-Performance Lithium-IonStorage, Advanced Energy Materials 2 (1) (2012) 95-102.
38.   Y.L. Cao*, L.F. Xiao, M.L.Sushko, W. Wang, B. Schwenzer, J. Xiao, Z.M. Nie, L.V. Saraf, Z.G. Yang, J.Liu*, Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications,Nano Letters 12 (7) (2012) 3783-3787.
39.   Y.L. Cao*, L.F. Xiao, W.Wang, D.W. Choi, Z.M. Nie, J.G. Yu, L.V. Saraf, Z.G. Yang, J. Liu*, ReversibleSodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with LongCycle Life, Advanced Materials 23 (28) (2011) 3155.
40.   Y. Cao, X. Li, I.A. Aksay,J. Lemmon, Z. Nie, Z. Yang, J. Liu*, Sandwich-type functionalized graphenesheet-sulfur nanocomposite for rechargeable lithium batteries, PhysicalChemistry Chemical Physics 13 (17) (2011) 7660-7665.
41.   J.F. Qian, M. Zhou, Y.L.Cao*, X.P. Ai, H.X. Yang, Template-Free Hydrothermal Synthesis of NanoembossedMesoporous LiFePO4 Microspheres for High-Performance Lithium-Ion Batteries,Journal of Physical Chemistry C 114 (8) (2010) 3477-3482.
42.   Z.X. Chen, Y.L. Cao*, J.F.Qian, X.P. Ai, H.X. Yang*, Facile synthesis and stable lithium storageperformances of Sn- sandwiched nanoparticles as a high capacity anode material forrechargeable Li batteries, Journal of Materials Chemistry 20 (34) (2010)7266-7271.
43.   Z. Chen, Y. Cao*, J. Qian,X. Ai, H. Yang*, Antimony-Coated SiC Nanoparticles as Stable and High-CapacityAnode Materials for Li-Ion Batteries, Journal of Physical Chemistry C 114 (35)(2010) 15196-15201.
44.   J.F. Qian, P. Liu, Y. Xiao,Y. Jiang, Y.L. Cao*, X.P. Ai, H.X. Yang, TiO2-Coated Multilayered SnO2 HollowMicrospheres for Dye-Sensitized Solar Cells, Advanced Materials 21 (36) (2009)3663.
45.   Y.L. Cao, L.H. Yu, T. Li,X.P. Ai and H.X. Yang*,Synthesis and electrochemical characterization of carbon-coatednanocrystalline LiFePO4 prepared by polyacrylates-pyrolysis route, Journal ofPower Sources,  2007,172,913-918.
46.   Yuliang Cao, Wenchao Zhou,Xiaoyan Lia, Xinping Ai, Xueping Gao, Hanxi Yang*,Electrochemicalhydrogen storage behaviors of ultrafine Co–P particles prepared by directball-milling method, Electrochimica Acta 51 (2006) 4285–4290.
47.   W.C. Zhou, H.X. Yang, S.Y.Shao, X.P. Ai, Y.L. Cao*, Superior high rate capability of tin phosphide usedas high capacity anode for aqueous primary batteries, ElectrochemistryCommunications 8 (2006) 55–59.
48.   Lihong Yu  YuliangCao*  Hanxi Yang  Xinping Ai,Synthesis andelectrochemical properties of high-voltage LiNi0.5Mn1.5O4 electrode materialfor Li-ion batteries by the polymer-pyrolysis method, J. SolidState Electrochem., 10 (2006) 283–287
49.   Lihong Yu, Hanxi Yang,Xinping Ai and Yuliang Cao*.  Structural and Electrochemical Characterizationof Nanocrystalline Li[Li0.12Ni0.32Mn0.56]O2 Synthesized by a NovelPolymer-pyrolysis Route. J. Phys. Chem. B, 2005, 109 1148-1154.
50.   Y. Cao, H.Yang*, Improveddischarge capacity and depressed surface passivation of zinc anode in dilutealkaline solution using surfactant additives, J. Power Sources, 128(1), (2004)97-101.
51.   L.H. Yu, Y.L. Cao*, H.X.Yang, X.P. Ai, Y.Y. Ren,Preparation and electrochemical characterization of nanocrystallineLi[Li0.12Ni0.32Mn0.56]O2 pyrolyzed from polyacrylate salts,MaterialsChem. and Phys. 88 (2004) 353–356.
52.   Yuliang Cao, Lifen Xiao,Xinping Ai, and Hanxi Yang*.Surface-Modified Graphite as an ImprovedIntercalating Anode for Lithium-Ion Batteries. Electrochemical and Solid-StateLetters, 2003, 6(2): A30-33.
53.   Y.L. Cao, H.X. Yang*, X.P.Ai, L.F. Xiao.The mechanism of oxygen reduction on MnO2-catalyzed air cathode inalkaline solution. Journal of Electroanalytical Chemistry.2003, 557:127-134.



  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖
回复

使用道具 举报

76

主题

93

帖子

97

积分

注册会员

Rank: 2

积分
97
沙发
发表于 2018-4-23 08:40:15 | 只看该作者

低缺陷低孔隙度硬碳用于高库仑效率高容量钠离子电池负极

由于具有良好的成本效益和电化学稳定性,碳基材料作为钠离子电池的负极材料前景诱人。其中硬碳已作为钠离子电池的负极材料进行了深入研究。硬碳可通过各种含碳物质产生,包括生物质(如纤维素、花生壳、香蕉和柚子皮)以及有机聚合物(如酚醛树脂、聚苯胺、聚乙烯)。然而,上述硬碳材料的应用很大程度上受到了低初始库仑效率(ICE)的限制。研究人员已广泛研究了热解温度对硬碳的微观结构以及电化学性能的影响。一般来说,随着热处理温度的增加,石墨化程度随之提升,使得硬碳的表面积和孔隙度降低,同时缺陷的含量也有所降低。硬碳的表面积(孔隙度)和缺陷含量是影响其电化学性能的重要因素,这些电化学性能包括可逆容量、操作电压和初始库仑效率。

近日,美国太平洋西北国家实验室Liu Jun博士、武汉大学曹余良教授等系统地调控具有相似整体架构硬碳的缺陷含量和孔隙度,并在Adv. Energy Mater.上发表了题为“Low-Defect and Low-Porosity Hard Carbon with High Coulombic Efficiency and High Capacity for Practical Sodium Ion Battery Anode”的研究论文。该工作提出石墨层中的缺陷与ICE直接相关,缺陷会捕获钠离子并产生排斥其他钠离子的电场,降低了低压插层容量。所得低缺陷和孔隙度的硬碳电极获得了高达86.1%的ICE(纯硬碳材料导电炭黑为94.5%),其可逆容量为361mAh·g-1,循环稳定性良好(100次循环后容量保留93.4%)。该工作揭示了可行的高性能储钠硬碳设计原则,即合适的碳层距离以及无缺陷的石墨层。




回复 支持 反对

使用道具 举报

17

主题

26

帖子

31

积分

新手上路

Rank: 1

积分
31
板凳
发表于 2018-12-4 08:42:53 | 只看该作者
科睿唯安(Clarivate Analytics)发布了其2018年度全球“高被引科学家”名单,这也是该名单连续第五年发布。全球来自21个自然科学与社会科学领域的4000多(人次)高被引科学家入榜。入选榜单的武汉大学的四位学者全部来自我院,分别是张俐娜院士、杨汉西教授、雷爱文教授、曹余良教授。其中,张俐娜院士、杨汉西教授、曹余良教授在“跨学科”领域当选,雷爱文教授在“化学”领域当选。
据悉,科睿唯安是全球专业信息与分析服务的领导者,“高被引科学家”名单体现了该学科领域中的科研人员所取得的科研成果受到全球同行的集体认可。4位教师成功入选是对他们学术水平的充分认可,也是学院学科建设成果的集中体现。

回复 支持 反对

使用道具 举报

77

主题

81

帖子

89

积分

注册会员

Rank: 2

积分
89
地板
发表于 2020-9-10 19:10:52 | 只看该作者
层状锂锰氧(LRMO)正极材料因具有高的比容量(> 250 mAh/g)和电势电位, 当和硅负极匹配的时候,可以构造出开路电压为5V的全电池,且释放高达500 Wh/kg的理论容量。但目前的碳酸酯电解液通常具有较差的阳极稳定性,在高压下容易被氧化,极大限制了这类材料的商业进展。为提高电解液的电化学窗口,通常具有两种策略:1、高度浓缩电解液; 2、氟化溶剂分子作为电解液添加剂。但其中高度浓缩的电解液由于盐浓度远大于1M,使得在使用中电解液的粘稠度急剧上升,大大降低了电池的倍率性能,进而阻碍了这类电解液的商业化进展。相比之下,由于氟原子高的电子受体(电负性)和低的极化度,使得氟化有机分子具有高氧化稳定性、低熔点和高闪点的优点,因此氟化溶剂分子被目前认为是一种最理想的策略。特别是以磷酸盐为基础的氟化溶剂分子,这类溶剂分子可以借助磷酸盐来捕获可燃性自由基,如氧自由基等,实现电解液的阻燃性。
       武汉大学化学与分子科学学院曹余良教授团队在Wiley出版集团新推出的信息材料领域高影响力期刊InfoMat上发表的题为“Enabling an intrinsically safe and high-energy-density 4.5 V-class Li-ion battery with nonflammable electrolyte”的文章中,报道了一种以磷酸酯为基础的三(2,2,2-三氟乙基)亚磷酸酯(TFEP)来完全替代酯类电解液的一种新型策略,证实了在完全取代酯类溶剂的情况下,仍然能够实现稳定循环的高压锂离子电池,为高压阻燃性电解液的设计提供了一种新方法和策略。
       三(2,2,2-三氟乙基)亚磷酸酯(TFEP)是一种高度氟化的磷酸盐,沸点高达186℃,是目前商业电解液的2-3倍,完全避免了目前电解液易挥发的缺点。同时由于磷酸盐和氟原子的存在,这种电解液可以基本满足目前对电解液的需求,即不可燃烧、热稳定和较高的离子电导率。当采用5 voL%的FEC和5 voL% VC作为添加剂的时候,以硅为负极,锂锰氧为正极的全电池测试中,可实现在200次循环后,容量为72%,平均库伦效率维持在99.7%的高性能锂离子电池。除此之外,这种高度氟化的电解液由于采用较低盐浓度(0.8 M LiPF6)可以有效降低高度浓缩电解液带来的盐成本问题,为后续设计多功能磷化溶剂提供了一种崭新的思路。
       该工作发表在InfoMat(DOI: 10.1002/inf2.12089)上。

回复 支持 反对

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-4-19 13:33 , Processed in 0.096660 second(s), 38 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表