找回密码
 立即注册

QQ登录

只需一步,快速开始

扫一扫,访问微社区

查看: 210|回复: 4

[专家学者] 国家纳米科学中心中科院纳米生物效应与安全性重点实验室梁兴杰

[复制链接]

64

主题

64

帖子

73

积分

注册会员

Rank: 2

积分
73
发表于 2017-9-13 09:28:17 | 显示全部楼层 |阅读模式
梁兴杰,中国科学院“百人计划”研究员,国家杰出青年基金获得者(生物材料和纳米医学),博士生导师。在中国科学院生物物理研究所,生物大分子国家重点实验室膜分子生物学室获得博士学位,其后在美国国立卫生研究院 (NIH) 国家肿瘤研究所 (NCI) 细胞生物学实验室 (LCB), 在NIH副院长Michael M. Gottesman博士研究组从事5年博士后研究,研究恶性肿瘤细胞对化疗药物cisplatin的分子和细胞耐药机理。之后在美国国家神经疾病与中风研究所 (NINDS), 帕特神经科学研究中心(Porter Neuroscience Research Center), 外科和分子肿瘤神经实验室工作,研究恶性脑灰质瘤的药物和基因治疗机理。回国前作为助理教授在Howard University医学院放射医疗系从事纳米药物分子在动物体内的分子和细胞成像研究。   
  梁兴杰研究员现为国家纳米科学中心中国科学院纳米材料的生物医学效应和纳米安全重点实验室副主任, 中国科学院纳米科学卓越中心纳米药物组组长,中国生物物理学会会员,中国药学会高级会员, 《Biophysics Reports》 和 《Biomaterials》 杂志副主编, 《ACS Nano》 建议编委会杂志编委, 《Current Nanoscience》, 《Theranostics》, 《Biomaterials Research》等杂志编委及《Biotechnology Advances》杂志客座编委。


梁兴杰

梁兴杰
姓    名:梁兴杰        
性    别:男
职    务:纳米生物效应与安全性研究室副主任        
职    称:研究员
通讯地址:北京市海淀区中关村北一条11号
邮政编码:100190        
电子邮件:liangxj@nanoctr.cn        
梁兴杰课题组主页

研究方向为纳米药物的设计合成、结构优化和功能测定及其临床应用中的生物机制。
课题组欢迎具有细胞生物学、药学、肿瘤学、免疫学、病毒学、遗传发育学、高分子材料、化学、病理学或临床医学等相关专业的本科、硕士、博士学位或有博士后经历者到实验室进行短期或长期科研工作。

研究领域:纳米医学和纳米药学
获奖及荣誉:
  2004,2005 和 2006 年连续三年获得美国国立卫生研究院“优秀科研奖”, 2010获得国务院政府有突出贡献专家(自然科学类),2012年获得国家杰出青年基金,2012年获得中国药学会青年药物学家奖, 2013年获得中国科学院百人计划优秀奖,2014年获得国家质量监督检验检疫总局“科技兴检奖”。中国医学科学院生物医学工程研究所 兼职研究员
代表论著:
  1.Xue X , Yang J, He Y, Wang L, Liu P, Yu L, Bi G, Zhu M, Liu Y, Xiang R, Yang T, Fan X, Wang X, Qi J., Zhang H., Wei T., Cui W., Ge G. , Xi Z*., Wu C*., Liang XJ*. Aggregated single - walled carbon nanotubes attenuate the behavioral and neurochemical effects of methamphetamine in mice. Nature Nanotechnology 2016. DOI: 10.1038/NNANO.2016.23.
  2.Tuguntaev R, Okeke C, Xu J, Li C,* Wang PC and Liang XJ*. Nanoscale polymersomes as anti-cancer drug carriers applied for pharmaceutical delivery. Current Pharmaceutical Design. 2016. accepted
  3.Zhuang X; Ma X*; Xue X; Jiang Q; Song L; Dai L; Zhang C; Jin S; Yang K; Ding B; Wang P; Liang XJ*. A Photosensitizer-loaded DNA Origami Nanosystem for Photodynamic Therapy. ACS Nano. 2016. revised.  
  4.Ma X, Gong N, Zhong L, Liang XJ*. Future of Nanotherapeutics: Targeting the Cellular Sub-organelles. Biomaterials. 2016. revised
  5.Liu J; Wei T; Zhao J; Huang Y; Deng H; Kumar A; Wang C; Liang Z; Ma X*; Liang XJ*. Multifunctional Aptamer-based Nanoparticles for Targeted Drug Delivery to Circumvent Cancer Resistance. Biomaterials. 2016. revised
  6.Zhao J, Liu J, Wei T, Ma X, Huo S, Zhang C, Zhang Y, Duan X* and Liang XJ*. Quercetin-loaded nanomicelles to circumvent human castration-resistant prostate cancer in vitro and in vivo. Nanoscale. 2016, DOI: 10.1039/C5NR08966B
  7.Xue X, Xu J., Wang PC, Liang XJ*. Subcellular Behaviours Evaluation of Nanopharmaceuticals with Aggregation-Induced Emission Molecules. Journal of Material Chemistry C. 2016, DOI: 10.1039/C5TC03651H
  8.Chen S, Yang K, Tuguntaev RG, Mozhi A, Zhang J*, Liang XJ*.Targeting tumor microenvironment with PEG-based amphiphilic nanoparticles to overcome chemoresistance. Nanomedicine 2016. DOI:10.1016/j.nano.2015.10.020.
  9.Jiang Y, Huo S, Hardie J, Liang XJ and Rotello VM. Progress and perspective of inorganic nanoparticles based siRNA delivery system. Expert Opinion on Drug Delivery. 2016. DOI:10.1517/17425247.2016.1134486.   
  10.Li H, Lee T, Dziubla T, Pi F, Guo S, Xu J, Li C, Haque F, Liang XJ and Guo P. RNA as a Stable Polymer to Build Controllable and Defined Nanostructures for Material and Biomedical Applications. Nano Today. 2015. 10: 631-655.
  11.Gong N, Chen S, Jin S, Zhang J, Wang PC, Liang XJ*.Effects of the physicochemical properties of gold nanostructures on cellular internalization. Regenerative Biomaterials. 2015.273-280.
  12.Xue X, Zhao Y, Zhang X, Zhang C, Kumar A, Zhang X, Zou G, Wang PC, Zhang J, Liang XJ*. Phenylboronic Acid Functionalized Magnetic Nanoparticles for One-step Saccharides Enrichment and Mass Spectrometry Analysis. Biophysics Report. 2015. 1(2):61-70.  
  13.Wang Y, Che J, Zheng Y, Chen F, Jin S, Gong N, Zhong L, Xu J, Zhao Y* and Liang XJ*. Multi-stable fluorescent silica nanoparticles obtained from in situ doping with aggregation-induced emission molecules. Journal of Materials Chemistry B. 2015, 3, 8775 – 8781.
  14.Hao X, Hu X, Zhang C, Chen S, Li Z, Yang X, Liu H, Jia G *, Liu D, Ge K, Liang XJ*, Zhang J *. Hybrid Mesoporous Silica-Based Drug Carrier Nanostructures with Improved Degradability by Hydroxylapatite. ACS Nano. 2015. 27, 9(10):9614-9625.   
  15.Jiang Y, Huo S, Hou S, Mizuhara T, Moyano DF, Duncan B, Liang XJ and Rotello VM. The Interplay of Size and Surface Functionality on the Cellular Uptake of Sub-10 nm Gold Nanoparticles. ACS Nano. 2015. 27, 9(10):9986-9993.  
  16.Yang K, Li S, Jin S, Xue X, Zhang T, Zhang C, Xu J and Liang XJ*. Micelle-like Luminescent Nanoparticles as a Visible Gene Delivery System with Reduced Toxicity. Journal of Materials Chemistry B, 2015, 3: 8394 – 8400.
  17.Liu Y, Zhang D, Qiao ZY, Qi GB, Liang XJ, Chen XG, Wang H. A Peptide-Network Weaved Nanoplatform with Tumor Microenvironment Responsiveness and Deep Tissue Penetration Capability for Cancer Therapy. Adv Mater. 2015.27(34): 5034-5042.  
  18.Zhao Y; Chen F; Pan Y; Li Z; Xue X; Okeke C; Wang Y; Li C; Peng L; Wang P; Ma X*; Liang XJ*. Nanodrug Formed by Co-assembling of Dual Anticancer Drugs to Inhibit Cancer Cell Drug Resistence. ACS Applied Materials & Interfaces. 2015. 7(34):19295-19305.
  19.Huang Y, Wang X, Huang W, Cheng Q, Zheng S, Guo S, Cao H, Liang XJ, Du Q and Liang Z. Systemic Administration of siRNA via cRGD-containing Peptide. Scientific Reports. 2015. 5: 12458.
  20.Zhang J, Li S, An F, Liu J, Jin S, Zhang J, Wang PC, Zhang X, Lee CS and Liang XJ*. Self-carried Curcumin Nanoparticles for In vitro and In vivo Cancer Therapy with Real-time Monitoring of Drug Release. Nanoscale. 2015. 7(32):13503-13510.
  21.Chen F, Zhao Y, Pan Y, Xue X, Zhang X, Anil K, Liang XJ*.Synergistically Enhanced Therapeutic Effect of a Carrier-Free HCPT/DOX Nanodrug on Breast Cancer Cells through Improved Cellular Drug Accumulation. Molecular Pharmaceuticals. 2015. 12:2237-2244.
  22.Xue X, Jin S, Zhang C, Yang K, Huo S, Chen F, Zou G and Liang XJ*. A Probe-Inspired Nano-Prodrug with Dual-Color Fluorogenic Property Reveals Spatiotemporal Drug Release in Living Cells. ACS Nano. 2015. 24; 9(3):2729-2739.
  23.Li S, Zhang C, Cao W, Ma B, Ma X, Jin S, Zhang J, Wang PC, Li F and Liang XJ*. Anchoring Effects of Surface Chemistry on Gold Nanorods: Modulates Autophagy. Journal of Materials Chemistry B. 2015. 3, 3324 – 3330.
  24.Wei T, Chen C, Liu J, Liu C, Posocco P, Liu X, Cheng Q, Huo S, Liang Z, Fermeglia M, Pricl S, Liang XJ*, Rocchi P, Ling Peng*. Anticancer drug nanomicells formed by self-assembling amphiphilic dendrimers to combat cancer drug resistence. Proc Natl Acad Sci U S A. 2015. 112(10): 2978-2983.
  25.Yang J, Li Y, Jin S, Xu J, Wang PC, Liang XJ*, Zhang X. Engineered biomaterials for development of nucleic acid vaccines. Biomaterials Research. 2015.19:5.1-9.  
  26.Zhang T, Song X; Zhang L; Zhang C, Cao W, Jin S, Wang C; Tian J; Xing J* and Liang XJ*.Modified Bovine Serum Albumin as an Effective Charge-reversal Platform for Simultaneously Improving Transfection Efficiency and Biocompatibility of Polyplexes. Journal of Material Chemistry B. 2015. 3, 4698-4706
  27.Xiang Z, zhang T, Song, X, Zhang L, Zhang C, Jin S, Xing J, Liang XJ*. Structural impact of graft and block copolyme rs based on poly(N-vinylpyrrolidone) and poly(2-dimethylaminoethyl methacrylate) in gene delivery. Journal of Materials Chemistry B.  2015, 3: 4027-4035
  28.Song Y, Zhang T, Song X, Zhang L, Zhang C, Xing J and Liang XJ*. Polycations with excellent gene transfection ability based on PVP-g-PDMAEMA with random coil and micelle structures as non-viral gene vectors. Journal of Materials Chemistry B.  2015, 3: 911-918.
  29.Zhang C, Li Y, Xue X, Chu P, Liu C, Yang K, Jiang Y, Chen W, Zou G, Liang XJ*. A smart pH-switchable luminescent hydrogel. Chem Commun. 2015. 51(20):4168-4171. (BACK COVER)
  30.Zhang J, Li C, Zhang X, Huo S, Jin S, An F, Wang X, Xue X, Okeke CI , Duan G, Fengguang Guo, Zhang X, Hao J, Wang PC, Zhang J, Liang XJ*. In vivo tumor-targeted dual-modal fluorescence/CT imaging using a nanoprobe co-loaded with an aggregation-induced emission dye and gold nanoparticles. Biomaterials. 2015.(4) 103-111.
  31.Zhang C, Xue X, Luo Q, Li Y, Yang K, Zhuang X, Jiang Y, Zhang J, Liu J, Zou G and Liang XJ*. Self-Assembled Peptide Nanofibers Designed as Biological Enzymes for Catalyzing Ester Hydrolysis. ACS Nano. 2014. 25;8(11):11715-23
  32.Huang Y, Wei T, Yu J, Hou Y, Cai K*, Liang XJ*.  Multifunctional Metal Rattle-Type Nanocarriers for MRI-Guided Photothermal Cancer Therapy.  Molecular Pharmaceutics 2014. 11(10):3386-3394.  
  33.Xue X, Wang L, Sato Y, Jiang Y, Berg M, Yang DS, Nixon R, Liang XJ*.  Single-walled carbon nanotubes alleviate autophagic/lysosomal defects in primary glia from a mouse model of Alzheimer's disease. Nano Lett. 2014 14(9):5110-5117.
  34.Huo S, Jin S, Ma X, Xue X, Yang K, Wang PC., Zhang J, Hu Z and Liang XJ*. Ultra-small Gold Nanoparticles as Carriers for Nucleus-based Gene Therapy Due to Size-dependent Nuclear Entry. ACS nano. 2014. 24;8(6):5852-5862.
  35.Xing-Jie Liang. Nanotechnology and Cancer Nanomedicine. Biotechnology Advances 2014.32(4): 665. (editorial comments)
  36.Liu J, Huang Y, Kumar A, Tan A, Jin J, Mozhi A, Liang XJ*. pH-Sensitive nano-systems for drug delivery in cancer therapy. Biotechnology Advances 2014.32(4): 693-710.
  37. Xue X, Hall M, Zhang Q, Wang P, Gotteman MM, Liang XJ *. Nanoscale Drug Delivery Platforms Overcome Platinum-Based Resistance in Cancer Cells Due to Abnormal Membrane Protein. ACS Nano. 2013. 23;7(12):10452-10464.
  38.Xue X, Zhao Y, Dai L, Zhang X, Hao X, Huo S, Liu J, Liu C, Kumar A, Zou,G* Liang XJ*. Spatiotemporal Drug Release Visualized Through a Drug Delivery System with Tunable Aggregation-Induced Emission. Advanced Materials. 2014. 26(5):712-717
  39.Han L.; Zhao J.; Liu J.; Duan X.; Wei Y.; Liang XJ*. A universal gene carrier platform for treatment of human prostatic carcinoma by p53 transfection. Biomaterials. 2014 35(9):3110-3120.  
  40.Li Y,  Cheng Q, Jiang Q, Huang Y, Liu H, Zhao Y, Cao W, Ma G, Dai F,  Liang XJ*, Liang Z, Zhang X*. Enhanced endosomal/lysosomal escape by distearoyl phosphoethanolamine - polycarboxybetaine lipid for systemic delivery of siRNA. Journal of Controlled Release. 2014,176: 28:104–114.
  41.Sun Y, Cao W, Li S, Jin S, Hu K, Hu L, HuangY, GaoX, Wu Y*, Liang XJ*. Ultrabright and multicolorful fluorescence of Amphiphilic Polyethyleneimine polymerdots for efficiently combined imaging and therapy. Scientific Reports 2013. 3:3036.
  42.Kumar A, Chen F, Mozhi A, Zhang X, Zhao Y, Xue X, Hao Y, Zhang X, Wang PC, Liang XJ*. Innovative pharmaceutical development based on unique properties of nanoscale delivery formulation. Nanoscale. 2013, 5 (18), 8307 – 8325.
  43.Wei T, Liu J, Ma H, ChengQ, Huang Y, Zhao J, Huo S, Xue X, Liang Z, Liang XJ *. Functionalized nanoscale micelles improve the drug delivery for cancer in vitro and in vivo. Nano Letter. 2013. 13(6):2528-2534.
  44.Kumar A, Zhang X, Liang, X.J*. Gold Nanoparticles: Emerging Paradigm for Targeted Drug Delivery System. Biotechnology Advances. 2013 (31):593-606.
  45.Gil P, Aberasturi D, Wulf V, Pelaz B, Pino P, Zhao Y, Fuente J, Larramendi, Teófilo Rojo I, Liang, X.J, Parak W. The challenge to relate physico-chemical properties of colloidal nanoparticles to their cytotoxicity.  Accounts of Chemical Research. 2013.46(3):743-749.
  46.Jia L, Lu Y, Shao J, Liang XJ, Xu Y. Nanoproteomics: a new spout from emerging links between nanotechnology and proteomics. Trends in Biotechnology, 2013. Feb 31(2): 99-107.
  47.Huo S, Ma H, Huang K, Liu J, Wei T, Jin S, Zhang J, He S and Liang, X.J*. Superior penetration and retention behavior of 50nm gold nanoparticles in tumor. Cancer Research, 2013 73:319-330.
  48.Hua D, Zhang X, Zou G, Kumar A, Zhang X and Liang, X.J*. Long genomic DNA amplicons adsorption onto unmodified gold nanoparticles for colorimetric detection of Bacillus anthracis. Chemical Communication. 2013, 49(1): 51-53.  
  49.Ma X, Zhang L, Wang L, Xue X, Sun J, Wu Y, Zou G, Wu X, Wang P, Wamer W, Yin J, Zheng K, Liang, X.J*. Single-walled Carbon Nanotubes Alter Cytochrome C Electron Transfer and Modulate Mitochondrial Function. ACS Nano, 2012. 21;6(12):10486-96
  50.Han L, Zhao J, Zhang X, Cao W, Hua X, Zou G, Duan X, Liang, X.J*. Simple charge-reversal polymer assembly nanosystem with good biocompatibility for enhanced siRNA delivery and silencing. ACS Nano, 2012. 28; 6(8):7340-51.
  51.Huang Y, He S, Cao W, Cai K and Liang, X.J*. Biomedical nanomaterials for imaging-guided cancer therapy. Nanoscale. 2012, 4 (20), 6135 – 6149.
  52.Jiang Q, Song C, Nangreave J, Liu X, Lin L, Qiu D, Wang Z, Zou G, Liang, X.J, Yan H, Ding B. DNA Origami as a Carrier for Circumvention of Drug Resistance. JACS. 2012. 134 (32), pp 13396–13403.
  53.Huang K, Ma H, Liu J, Huo S, Kumar A, Wei T, Zhang X, Jin S, Gan Y, Wang P, He S, Zhang Xand Liang, X.J*. Size-Dependent Localization and Penetration of Ultrasmall Gold Nanoparticles in Cancer Cells, Multicellular Spheroids, and Tumors in vivo. ACS Nano. 2012. 6 (5), 4483–4493. Commented on News and Views.  Nanomedicine (2012) 7(7), 945–948.
  54.Zhang X, Wu D, Shen X, Chen J, Sun Y, Liu P, Liang, X.J*. Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials. 2012. 33(27):6408-19.   
  55.Liu, J, Ma, H., Wei, T. and Liang, X.J*.. CO2 gas induced drug release from pH-sensitive liposome to circumvent doxorubicin resistant cells. Chemical Communication. 2012. 48, 4869–4871  
  56.Ma, H, Jiang, Q., Han, S.Y., Wu, Y., Li T., Wang D., Gan, Y.L., Zou, G.Y.*, and Liang, X.J.*. Multicellular Tumor spheroids (MCTSs) as an in vivo-like model for 3D Imaging of Chemotherapeutics and Nano Materials Penetration. Molecular Imaging, 2012. 11(6): 487-98.
  57.Liu Z and Liang, X.J*. Nano-Carbons as Theronostics.. Theranostic. 2012, 2(3): 235-237. (Editorial comment)
  58.Kumar, A., Ma, H., Zhang, X., Huang, K., Jin, S.B., Liu, J., Wei, T., Cao, W.P., Liang, X.J*. Ultra-Small Gold Nanoparticles Fabricated with Therapeutic and Targeted Peptides for Cancer Treatment. Biomaterials 2012. 33(4): 1180-1189.
  59.Xue, X., You, S., Zhang, Q., Wu, Y.,  Zou, G.Z., Wang, P.C., Zhao, Y., Xu, Y., Jia, L., Zhang, X., Liang, X.J*. Mitaplatin increases sensitivity of tumor cells to cisplatin by inducing mitochondrial dysfunction. Molecular Pharmaceutics, 2012, 9 (3): 634−644.
  60.Deng, H., Xu, Y., Liu, Y.H., Che, Z.J., Guo, H.L., Shan, S., Sun, Y., Liu, X., Huang, K., Ma, X.W., Wu, Y. and Liang, X.J*. Gold nanoparticles with asymmetric polymerase chain reaction for rapid colorimetric detection of DNA sequence. 2011. Analytical Chemistry, 2012, 2012, 84 (3): 1253–1258.
  61.Ma, X.W., Wu, Y., Jin, S.B., Tian.Y., Zhang, X.N., Zhao.Y., Yu, L. and Liang, X.J*. Gold Nanoparticles Induce Autophagosome Accumulation through Size-Dependent Nanoparticle Uptake and Lysosome Impairment. ACS Nano. 2011. 5 (11):  8629–8639.
  62.Ma, X.W., Zhao, Y., Liang, X.J*. Theranostic Nanoparticles engineered for Clinic and Pharmaceutics. Accounts of Chemical Research. 2011. 44(10): 1114–1122.  
  63.Guo, S.T., Huang, Y., Wei, T., Wang, W.D., Wang, W.W., Lin, D., Zhang, X., Kumar, A., Du, Q., Xing, J., Deng, L., Liang, Z., Wang, P., Dong A., and Liang, X.J.* Amphiphilic and Biodegradable Methoxy Polyethylene glycol-block-(polycaprolactone-graft-poly (2-(dimethylamino)ethyl methacrylate)) as an Effective Gene Carrier. Biomaterials, 2011, 32: 879-889.
  64.Guo, S.T., Huang, Y., Jiang, Q., Sun, Y., Deng, L., Liang, Z., Du, Q., Xing, J., Zhao, Y., Wang, P., Dong A., and Liang, X.J.*. Enhanced Gene Delivery and siRNA Silencing by Gold Nanoparticles Coated with Charge-reversal Polyelectrolyte. ACS Nano. 2010. 4(9): 5505-5511.  
  65.Liang, X.J. *, Meng, H., Wang, Y., He, H., Meng, J., Lu, J., Wang, P. C., Zhao, Y., Gao, X., Sun, B., Chen, C., Xing, G., Shen, D., Gottesman, M. M., Wu, Y., Yin, J.J., Jia, L. Metallofullerene Nanoparticles Circumvent Tumor Resistance to Cisplatin by Reactivating Endocytosis.  Proc Natl Acad Sci U S A. 2010. 107(16):7449-7454.
  66.Ma, X.W., Wang, D., Wu, Y., Ho, RJY, Jia, L., Guo, P., Hu, L., Xing, G., Zeng, Y., Liang, X.J*. AIDS Treatment with Novel Anti-HIV Compounds Improved by Nanotechnology. AAPS J. 2010, 12(3):272-278.
  67.Xing, J, Deng, L, Guo, S, Dong, A, and Liang, X.J*.  Polycationic Nanoparticles as Nonviral Vectors Employed for Gene Therapy In Vivo. Mini-Reviews in Medicinal Chemistry. 2010, 10(2):126-37.  
  68.Tan, J.J., Cong, X.J., Hu, L.M., Wang, C.X., Jia, L and Liang, X.J*. Therapeutic Strategies Underpinning the Development of Novel Techniques for the Treatment of HIV Infection. Drug Discovery Today. 2010. 15(5): 186-197.  
  69.Yin, JJ., Lao, F., Meng, J., Fu, PP., Zhao, YL, Xing G, Gao X, Sun, B, Wang, PC., Chen, C, Liang, XJ*. Inhibition of Tumor Growth by Polyhydroxylated Endohedral Metallofullerenol Nanoparticles Optimized as Reactive Oxygen Species Scavenger. Molecular Pharmacology. 2008. 74: 1132-1140.  
  回国工作前的代表性文章:
  70.Liang, X. J.*, Shen, D.W., Yin, J.J., Aszalos, A., and Gottesman, M. M. SIRT1 contributes to cisplatin resistance in cancer cells by altering mitochondrial metabolism.  Molecular Cancer Research. 2008, 6(9):1499-1506.
  71.Liang, X.J., Choi, Y., Sackett, D.L. and Park, J.K.  Inhibition of stathmin enhances CCNU blocking glioma cell migration and invasion. Cancer Research. 2008, 68(13):5267-5272.
  72.Hall MD, Okabe M, Shen, DW, Liang, XJ, and Gottesman, MM. The Role of Cellular Accumulation in Determining Sensitivity to Platinum-Based Chemotherapy. Annual Review of Pharmacology and Toxicology. 2008,48: 495-535.
  73.Ngo.T.B*, Peng T., *, Liang X.J *., Akeju O., Pastorino S., Zhang W., Fine H.A., Maric D., Wen P.Y.,  Girolami U.D., Black P.M., Wu W.,  Shen R.F., Kang D.W., and Park J.K. The 1p encoded protein stathmin modulates the response of malignant gliomas to nitrosoureas. Journal of National Cancer Institute. 2007, 99: 639-652.  
  74.Liang, X. J., Mukherjee, S., Shen, D. W., Maxfield, F. R. and Gottesman, M. M. Endocytic Recycling Compartments Altered in Cisplatin-Resistant Cancer Cells . Cancer Research. 2006, 66 (4): Feb 15; 2346-2353.  
  75.Liang, X. J., Shen, D. W., Chen G. K., Wincovitch S. M., Garfield, S., and Gottesman, M. M. Trafficking and localization of platinum complexes in cisplatin-resistant cell lines monitored by fluorescence-labeled platinum.  Journal of Cellular Physiology. 2005, 202 (3): 635-641.
  76.Liang, X.J, Shen, D.W, and Gottesman, M.M. Down-regulation and altered localization of g-catenin in cisplatin-resistant adenocarcinoma cells.  Molecular Pharmacology. 2004 65 (5): 1217-1224.  
  77.Liang, X.J, Shen, D.W, and Gottesman, M.M. A pleiotropic defect reducing drug accumulation in cisplatin-resistant cells.  Journal of Inorganic Biochemistry. 2004 (98) 1599-1606.
  78.Liang, X.J, Yin, J.J., Zhou, J.W., Wang, P. C., Taylor, B., Cardarelli, C., Kozar, M, Forte, R., Aszalos, A. and Gottesman, M. M. Changes in biophysical parameters of plasma membranes influence cisplatin resistance of sensitive and resistant epidermal carcinoma cells.  Experimental Cell Research. 2004, 293: 283-291.
  79.Liang, X. J., Shen, D. W., Garfield, S., and Gottesman, M. M.  Mislocalization of membrane proteins associated with multidrug resistance in cisplatin-resistanct cancer cell lines.  Cancer Research. 2003, 63: 5909-5916.   
  Book Chapters:
  1.Gottesman, M.M., Hall, M.D., Liang, X.J., and Shen, D.W.: Resistance to Cisplatin Results from Multiple Mechanisms in Cancer Cells. In Bonetti, A. Leone, R. Muggia, F. Howell, S.B. (Eds.): Platinum and Other Heavy Metal Compounds in Cancer Chemotherapy: Molecular Mechanisms and Clinical Applications. Humana Press, Totowa, New Jersey, 2009, 83-88.
  2. Liang, X.J., Chen, C.Y., Zhao, Y.L., Wang, P.C. Circumventing tumor resistance to chemotherapy by nanotechnology. Multi-Drug Resistance in Cancer Series: Methods in Molecular Biology , Zhou, Jun (Ed.), Humana Publisher, New York, 2010; 596: 467-488.
  3.Tan, J., Liu, C., Hu, L., Wang, C and Liang, X.J. The State of the Science: a 5-Year Review on the Computer-Aided Design for Global Anti-AIDS Drug Development. HIV-infection - Impact, Awareness and Social Implications of living with HIV/AIDS, Eugenia Barros (Edited), 2011, INTECH open access publisher, ISBN978-953-307-343-9. 2011, 25-46.
  4.Liang, X.J.  Editing “Nanopharmaceuticals: Potential Application of Nanomaterials. (approx. 800pp) World Scientific Publication Press, New Jersey, 2012. ISBN: 978-981-436-866-7.
  5.Xue, X., Liang, X.J. Multifunctional Nanoparticles for Theranostics and Imaging. Nanomedicine: Nanostructure Science and Technology 2014, pp 101-115.  
  6.梁兴杰、 杨科妮、李盛亮、王重夕、金叔宾等。第6章 纳米辅料的药学应用。阎锡蕴主编 科学出版社。2014. Page  281-336
  7.Huo, S., Cao, X., Hu, Z. and Liang, X.J. Gold Nanoparticles: A Novel and Promising Avenue for Drug Delivery. Chapter 2 in Section I Nanomaterials for Drug Delivery. Biological and Pharmaceutical Application of Nanomaterials. Polina Prokopovich (eds.). CRC Press, Taylor & Francis Group. Florida. 2015, pp 39-53.  
承担科研项目情况:
1. 中芬纳米科学国际合作项目,2008-2010  2. 科技部纳米科学重大基础研究计划, 2009-2013  项目负责人 3. 国家自然科学基金委重点项目, 2014-2017 项目负责人 4. 科技部基因治疗研究计划,2012-2016 课题负责人 5. 国家自然基金委杰出青年资助项目, 2013-2016课题负责人 6. 中国科学院 纳米药物先导专项, 2013-2017. 子子项目负责人




回复

使用道具 举报

17

主题

26

帖子

31

积分

新手上路

Rank: 1

积分
31
发表于 2018-12-4 11:22:29 | 显示全部楼层
国家纳米科学中心梁兴杰AFM综述:功能纳米材料用于克服肿瘤免疫耐受
肿瘤免疫学的研究表明免疫耐受具有免疫原性低、抗原表达不充分、T淋巴细胞渗透率低等特点。这些特点也使得肿瘤细胞很容易逃脱免疫细胞的攻击。纳米材料以其超小尺寸、独特的表面特性和多价效应等独特的性能,在调控肿瘤免疫微环境的应用中受到越来越多的关注。梁兴杰等人综述了功能性纳米材料在避免肿瘤免疫耐受中的应用,包括用于构建肿瘤疫苗、检查点阻断递送、细胞因子递送和过继细胞治疗等等,并讨论了利用纳米材料克服肿瘤免疫耐受的优点和所面临的挑战。

功能纳米材料用于克服肿瘤免疫耐受

功能纳米材料用于克服肿瘤免疫耐受

Gong N Q, Zhang Y X, etal. Functional Nanomaterials Optimized to Circumvent Tumor Immunological Tolerance[J]. Advanced Functional Materials, 2018.
DOI:10.1002/adfm.201806087
https://doi.org/10.1002/adfm.201806087

回复 支持 反对

使用道具 举报

9

主题

21

帖子

27

积分

新手上路

Rank: 1

积分
27
发表于 2018-12-14 08:59:44 | 显示全部楼层
题目:纳米技术在生物医学研究中的发展和应用探讨
报告人:梁兴杰 博士,
              研究员,博士生导师,实验室副主任
报告时间:12月12日上午8点半
报告地点:厦门大学化学学院新楼308会议室


嘉宾简介:
      国家纳米科学中心研究员,中科院“百人计划”入选者(2007),享受国务院特殊津贴(2010), 国家杰出青年科学基金获得者(2012), 科技部中青年科技创新领军人才(2017)。2000年于中科院生物物理所,生物大分子国家重点实验室膜分子生物学室获博士学位。2000-2005年期间在美国国立卫生研究院 (NCI,NIH) Michael M. Gottesman 院士课题组从事博士后,2005-2007年在NINDS神经肿瘤外科实验室从事Research Fellow和Howard University的放射医学系为助理教授从事研究工作。 2007年回国至今在国家纳米科学中心工作,当选中国科学院“百人计划”择优支持学者并于2012年结题优秀,973项目首席科学家。现任中国科学院重点实验室“纳米生物效应与安全性实验室”副主任,中国生物物理学会纳米生物学分会 主任,中国药学会药物制剂专委会委员, 中国生物医药技术学会纳米生物技术分会 副主任,中国生物材料学会纳米生物材料分会 副主任。目前主要从事纳米结构的生物学效应,以及设计构建纳米药物,研究其逆转肿瘤多药耐药机制。已在Nature Nanotechnology, PNAS, Nano Letter, Advanced Materials,Cancer Research等国际重要学术期刊发表论文 290 余篇,文章引用率超 13000 次, H-index > 62。现担任《Current Drug Delivery》 主编,《Biophysics Reports》 和 《Biomaterials》 副主编, 《ACS Nano》 和《Advanced Therapeutics》顾问委员会编委,《Theranostics》,《Biomaterials Research》,《Bioconjugate Chemistry》等杂志编委,及《Biotechnology Advances》,《Science in China: Life Sciences》杂志客座编委。
研究领域:纳米药物与纳米生物技术
研究方向:纳米技术用于创新药物的设计合成、结构优化和功能测定及其临床应用中的生物机制。

回复 支持 反对

使用道具 举报

17

主题

23

帖子

25

积分

新手上路

Rank: 1

积分
25
发表于 2019-4-22 09:28:13 | 显示全部楼层
类风湿关节炎(RA)是最常见的慢性自身免疫性疾病之一。尽管目前对RA的临床治疗取得了相当大的进展,但也存在诸多尚未解决的挑战。国家纳米科学中心梁兴杰团队发现RA患者和胶原诱导关节炎(CIA)小鼠的滑膜液和滑膜中均有过表达的SPARC,它会分泌酸性蛋白并且富含半胱氨酸。基于RA微环境中的SPARC特征和SPARC对白蛋白的高亲和力,实验制备了负载甲氨蝶呤的人血清白蛋白纳米药物(MTX@HSA NMs),并将其作为治疗RA的仿生药物递送系统。
在向CIA小鼠静脉注射Ce6标记的MTX@HSA NMs后,荧光/磁共振双模态成像结果表明,相对于游离的MTX分子来说,炎症关节中MTX@HSA NMs的累积量更高,保留时间也更长。体内治疗结果表明,MTX@ HSANMs能够有效减轻RA,即使剂量减半也比游离的MTX有着更好的疗效和更少的副作用。这一研究通过揭示MTX@ HSA NMs在RA内高效积累的机制,证明其具有提高MTX安全性和治疗效果的能力,也将为开发具有临床转化潜力的创新型抗RA纳米药物提供了新的方向。

胶原诱导关节炎

胶原诱导关节炎

Lu Liu, Massimo Bottini, Weisheng Guo,Xing-Jie Liang, et al. Secreted Protein Acidic and Rich in Cysteine MediatedBiomimetic Delivery of Methotrexate by Albumin-Based Nanomedicines forRheumatoid Arthritis Therapy. ACS Nano, 2019.
DOI: 10.1021/acsnano.9b01710
https://pubs.acs.org.ccindex.cn/doi/10.1021/acsnano.9b01710

回复 支持 反对

使用道具 举报

28

主题

58

帖子

64

积分

注册会员

Rank: 2

积分
64
发表于 2019-11-2 20:08:13 | 显示全部楼层
当前,纳米技术为工程设计将基因转移到癌细胞的更稳定和有效的载体提供了巨大的潜力。 但是,目前的Au NPs载体仍然面临一些缺陷。一方面,由于细胞的胞吐作用,超小NPs的净摄取量仍然很低,导致治疗效果降低。另一方面,有效地从体内清除NPs是临床实践中NPs安全翻译的关键要求。国家纳米科学中心梁兴杰课题组设计并构建了DNA介导自组装的Au-DNA向阳花状多级次纳米结构(纳米向阳花)。在体外近红外光的调控响应下,使大尺寸颗粒(~200 nm)被动靶向到肿瘤部位,中等尺寸颗粒(~50 nm)渗透进肿瘤内部,小尺寸颗粒(<10 nm)被肿瘤细胞高效摄取,最终实现了良好的基因调控效果。

抗肿瘤基因治疗

抗肿瘤基因治疗
纳米向阳花表现出较强的NIR吸收和光热转化能力。在近红外辐射下,大尺寸的纳米结构可以分解并释放出超小的金纳米颗粒。c-myc癌基因沉默序列修饰的2 nm NPs的释放改善了NPs的细胞核通透性,从而提高了转染效率。研究表明,通过协同控制体外预培养时间,体内循环时间和照射时间,可实现细胞摄取量的增加,基因沉默功效可调节,并抑制肿瘤的效果。可变形的纳米向日葵为纳米载体的设计提供了极好的模型,该载体系统在生物医学应用中具有巨大的潜力。

Huo, S.; Gong, N.; Jiang, Y.; Chen, F.; Guo, H.; Gan, Y.; Wang, Z.; Herrmann, A.; Liang, X.-J., Gold-DNA nanosunflowers for efficient gene silencing with controllable transformation. Science Advances 2019, 5 (10), eaaw6264.
DOI: 10.1126/sciadv.aaw6264
https://advances.sciencemag.org/content/5/10/eaaw6264

回复 支持 反对

使用道具 举报

小黑屋|手机版|Archiver|版权声明|材料圈 ( 京ICP备14007691

GMT+8, 2019-11-12 06:40 , Processed in 0.284420 second(s), 39 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表