找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 1232|回复: 0
打印 上一主题 下一主题

[材料资讯] 陈涛等:开发出自修复、可粘附高分子水凝胶柔性触摸屏

[复制链接]

102

主题

122

帖子

146

积分

注册会员

Rank: 2

积分
146
跳转到指定楼层
楼主
发表于 2020-11-11 16:39:11 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
信息和物联网技术的迅速发展,催生了对电子系统的柔性化需求。触摸屏是十分普及的人机交互媒介,其中最关键的材料是透明导电薄膜。传统的触摸屏基于氧化铟锡(ITO)透明导电薄膜制备,还存在硬、易碎、不能弯曲折叠、不能共形贴合于曲面或人体以及碎裂后不可自修复等不足。设计具有自修复和可逆粘附功能的柔性透明导电材料,结合位置传感技术,制作柔性触摸屏,实现其贴附于任意曲面或穿戴于人体的应用,是柔性电子领域的迫切需求。水凝胶是含水聚合物网络材料,具有双连续相结构,其中,聚合物网络赋予其柔性固体性质,水和溶解的可移动离子赋予其离子导电性。如何进行分子和网络结构设计,使离子导电水凝胶具有高透光性、良好的力学、自修复和粘附性能,在此基础上构建高分辨触摸屏,具有重要的科学意义和使用价值。
  基于近年来在高分子水凝胶分子设计以及在形状记忆、智能驱动、柔性传感等领域应用的研究基础(Adv Funct Mater, 2018, 28, 1704568; ACS Sensor, 2018, 3, 2394; Adv Sci, 2019, 6, 1801584; Sci China Mater, 2019, 62, 831; ACS Macro Lett, 2019, 8, 937; Adv Funct Mater, 2019, 1905514; Angew. Chem. Int. Ed., 2019, 58,16243; Research, 2019, 2384347; Angew. Chem. Int. Ed., 2020, 59, 19237; Angew. Chem. Int. Ed., 2020, DOI: 10.1002/anie.202007885; Angew. Chem. Int. Ed., 2020, DOI:10.1002/anie.202011645),中国科学院宁波材料技术与工程研究所陈涛研究员团队与中科院纳米能源与系统研究所王中林院士、潘曹峰研究员团队合作,开发了一种可粘附于任意曲面使用的自修复水凝胶触摸屏(Adv. Mater., 2020, DOI: 10.1002/adma.202004290)。
  图1 自修复、可粘附位置传感器:(a)1D水凝胶触摸条构筑结构;切断-拼接的水凝胶经(b)静电吸引和(c)高分子链/粘土非共价吸附交联而自修复;(d)水凝胶与皮肤间的极性非共价作用,和(e)粘附于皮肤的照片;(f)手指在1D触摸条上逐点移动,V1电压随手指位置的变化;(g)手指触碰x=14/15前后,V1电压的变化
  图2 自修复1D水凝胶触摸条:(a)不同修复时间水凝胶的拉伸曲线;(b)水凝胶断面拼接-拉伸照片;(c)切断-拼接前后,水凝胶上电流的变化1;D触摸条切断-拼接(d)前(e)后,V1电压随手指滑动位置的变化;粘附于尼龙棒的触摸条(f)被切断-拼接,并用于(g)弹奏游戏钢琴
  图3 2D水凝胶触摸屏:(a)触摸屏电路图和触碰位置(输入位置);(b)与触碰位置对应的V1、V2、V3、V4电压峰值;(c)由电压值算得的触碰位置(输出位置);触摸屏(d)集成于个人电脑系统,并(e)用于写字
  这样的水凝胶是在纳米粘土([Mg5.34Li0.66Si8O20(OH)4]Na0.66)水溶液中原位聚合两性离子单体(3-[[2-(甲基丙烯酰氧基)乙基]二甲铵基]丙烷-1-磺酸盐(DMAPS))而合成的。其中的可移动离子为Na+(图1a)。聚合物/粘土间的非共价吸附交联作用,以及聚合物分子链上的正负电荷基团吸引,赋予水凝胶自修复功能(图1b-c)。两性离子基团与皮肤等被粘物的极性相互作用,赋予其可逆粘附性(图1d-e)。研究人员采用表面电容触控(SCT)技术,首先构建了1D水凝胶触摸条(图1f-g)。其电路搭接方法如图1a:在水凝胶条两端分别接电极、外部电阻,再接入交流电源。手指定位原理如下:手指触碰凝胶时,与凝胶间形成耦合电容(Cfinger),因此,电流可以经手指接地,形成通路;凝胶可看作电阻(Rh),该电阻被手指分为左、右两部分,各部分电阻值与其归一化长度(x、1-x)成正比;左、右两部分凝胶电阻并联,且分别串联一个外部电阻(Re),然后接入同一交流电源;因为并联电路两端电压相等,所以,当手指移向凝胶右侧,则右侧凝胶分得的电压减小,而右侧外部电阻上电压增大,相应地,左侧凝胶分得的电压增大,左侧外部电阻上电压减小;从而,根据外部电阻上的电压值可以确定x值,即手指位置(图1f-g)。
  水凝胶触摸屏具有良好的力学性能和透明度,断裂伸长率>1500%,对可见光(400-800nm)的平均透过率为98.8%,经折叠、弯卷、扭转后或在拉伸状态下仍能保持高度透明。为提供舒适的触碰体验,并延缓凝胶水份挥发,可在凝胶表面覆盖PDMS薄膜。水凝胶可粘附在滤纸、玻璃、丁腈橡胶、木头、棉布、PET、ABS、VHB胶带、硅橡胶、尼龙、PMMA、PS、PE等多种塑料、橡胶、织物或天然绝缘材料上。影响粘附牢固程度的因素包括水凝胶-基材间的静电、氢键、偶极等作用强度,基材表面粗糙度,凝胶高分子链-基材间拓扑缠结,以及粘附界面的能量耗散能力。随基材种类不同,粘附强度在1.941kPa,粘附韧性在38~18Jm-2之间变化。水凝胶触摸屏具有快速的导电性自修复能力,和优异的拉伸性能自修复效率(图2)。在凝胶中通直流电,切断,再拼接,电流经21s恢复。拼接24h,断裂伸长率回复至98%。拼接后的凝胶条仍具有手指定位功能,可用于弹奏电脑钢琴游戏。
  进一步地,研究人员将表面电容触控技术应用于2D水凝胶方片,实现了手指定位功能,构建了水凝胶触摸屏(图3);将触摸屏集成到计算机上,实现了文字、图像、指令输入功能。这样的触摸屏可用于写字、画画,或穿戴于手臂用于操控电脑游戏。
  本工作为自修复、可粘附柔性触摸屏的开发提供了新材料设计思想和位置传感的技术支持。该研究得到了国家重点研发计划、国家自然科学基金、中科院前沿科学重点研究项目、中科院青促会、北京市科技委项目、北京市自然科学基金等项目资助。
(高分子与复合材料实验室 高国荣)

       文章来源:宁波材料所
       陈涛,博士,研究员,博士生导师。2006年毕业于浙江大学化学反应工程国家重点实验室,获得高分子化学与物理博士学位。先后于2006年到2007年在英国华威大学(University of Warwick)化学系及于2007年到2010年在美国杜克大学(Duke University)材料科学与工程系从事博士后研究;2010年到2012年,作为洪堡学者在德国德累斯顿工业大学(Technische Universität Dresden)化学系从事科研工作。加入中科院宁波材料所,组建智能高分子材料课题组。在Chemical Society Review, Progress Polymer Science, Advanced Materials, Advanced Functional Materials, Chemical Science, Chemistry of Materials, Small, Chemical Communications, ACS Appl. Mater. Interfaces, Journal of Materials Chemistry A-C, Polymer Chemistry, Scientific Report, Macromolecular Rapid Communications, Langmuir, Soft Matter, Advanced Materials Interfaces, Journal of Physical Chemistry B和Polymer等期刊上发表一作/通讯作者SCI学术论文70余篇,共发表SCI论文120余篇,引用1900余次,H因子为24,合作出版专著4本,申请15项国家发明专利,5项获得授权。、
       潘曹峰,男,中国科学院北京纳米能源与系统研究所研究员,博士生导师,国家自然基金“优秀青年科学基金”获得者。2005、2010年分别在清华大学材料科学与工程系获学士、博士学位,曾获得清华大学优秀博士学位论文奖,北京市优秀博士学位论文奖以及全国优秀博士学位论文奖。其后于美国佐治亚理工学院材料科学与工程学院进行博士后研究。主要从事低维压电半导体力光电耦合效应及相关微纳光电功能器件研究。以构建高性能微纳光电功能器件为目标,以低维压电半导体为载体,从材料的设计和可控制备出发,探索力光电耦合效应对压电半导体光电器件性能的调制机制,研究了从单根纳米线原型器件到由大规模纳米线阵列构成的集成器件,在新型大规模柔性阵列式压电光电子学器件的设计和集成、超高分辨率应力传感及成像、高性能传感器、生物交互和控制等领域中取得了重要进展。在Nat. Photon.、Adv. Mater.、Adv. Energy Mater.、Angew. Chem. Int. Edit.、Nano Lett.、ACS Nano等期刊上发表SCI论文100多篇,引用2300多次。
        王中林﹐1982毕业于西北电讯工程学院(现名西安电子科技大学)﹐并于同一年考取中美联合招收的物理研究生(CUSPEA)。1987 年获亚利桑那州立大学物理学博士, 从师于国际电子显微学权威 John Cowley 教授。王博士现是佐治亚理工学院终身校董事讲席教授,Hightower终身讲席教授,工学院杰出讲席教授和纳米结构表征中心主任。他是中国科学院北京纳米能源与系统研究所首席科学家.

  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖
回复

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-4-19 23:57 , Processed in 0.294645 second(s), 39 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表