找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 1522|回复: 0
打印 上一主题 下一主题

[材料资讯] 刘生忠课题组:制备出光电转化效率达27%的钙钛矿-硅叠层电池

[复制链接]

65

主题

108

帖子

146

积分

注册会员

Rank: 2

积分
146
跳转到指定楼层
楼主
发表于 2019-11-18 17:24:35 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
中国科学院大连化学物理研究所薄膜硅太阳电池研究组(DNL1606)研究员刘生忠团队联合陕西师范大学研究员杨栋,通过将半透明钙钛矿电池与高效硅异质结薄膜电池结合,组成光电转化效率达到27.0%的四端钙钛矿-硅叠层太阳能电池
  晶硅太阳能电池是第一代太阳能电池,经过数十年发展,技术已经非常成熟。目前,95%的光伏市场份额被晶硅太阳能电池所占据。实验室报道的最好的晶硅太阳能电池的光电转化效率已经达到26.6%,非常接近它的理论光电转化效率极限29.4%。在物理法则下,晶硅电池的效率提升之路正变得越来越窄。为了实现更高的光电转换效率,越来越多的研究开始关注将晶硅电池与其它的高效率电池组成叠层电池。
  钙钛矿电池是近几年发展起来的第三代太阳能电池,它具有原料丰富、成本低、制备工艺简单、对缺陷的容忍性好等优点。目前,实验室报道的钙钛矿电池光电转换效率已超过24%。钙钛矿的结构通式是ABX3,A位通常是正一价的有机阳离子CH3NH3+、NH=CHNH3+或者无机Cs+离子等,B位通常是正二价金属阳离子Pb2+、Sn2+等。X通常是卤素阴离子I-、Br-、Cl-等。通过离子替换,钙钛矿的带隙可以在1.4到2.3 eV之间灵活调节,使它成为非常理想的叠层电池子电池材料。
  叠层电池由一个高带隙子电池和一个低带隙子电池组成。低带隙子电池拓宽了太阳光光子的利用率;高带隙子电池减少了半导体捕获高能光子后电子跃迁后弛豫过程的热能损失。因此叠层电池具有比单结电池更高的极限光电转化效率。得到高效率的叠层太阳能电池的关键之一是在温和条件下制备透明电极,即在不伤害底层材料的前提下,制备兼具高导电性和高透光性的电极。
  该团队使用真空热蒸发沉积薄膜的方法,以三氧化钼/金纳米网/三氧化钼“三明治结构”作为透明电极,替换掉传统钙钛矿电池中的金属背电极。制备的半透明钙钛矿太阳能电池具有18.3%的光电转化效率,这是目前使用超薄金属制备的半透明钙钛矿电池的最高效率之一。将此半透明钙钛矿太阳能电池与光电转化效率23.3%的硅异质结薄膜电池结合,得到了光电转换效率27.0%的四端叠层太阳能电池。
  该项研究使用了一种简单低成本的方法制备高导电性、高透光性的透明电极,有助于推动半透明电池以及多结/叠层电池的发展,降低光伏发电的成本。相关成果发表在《先进功能材料》(Advanced Functional Materials)上。该工作得到国家自然科学基金、中国国家重点研究与发展计划、陕西省科技创新引导项目等的资助。




       刘生忠中国科学院大连化学物理研究所研究员。刘生忠教授1992年在美国西北大学获博士学位。先后在美国阿贡国家实验室、英国BP Solar公司、美国United Solar公司等从事研究工作。现全职回国工作,任大连化学物理研究所研究员和陕西师范大学教授。研究领域包括纳米材料、薄膜材料、太阳能光伏材料、电光薄膜的电化学沉积和光伏技术的开发、放大和生产。多项研究成果发表在《Science》、《Nature》和《Angew. Chem.》等刊物上,现已经申请专利的、在美国专利局网站可查到的发明文献有六十余项。刘教授的研究技术多项指标处于世界领先水平,其中“透明太阳能薄膜电池”被称为是“世界最佳发明奖”(R&D 100奖)。


    钙钛矿/晶硅叠层太阳能电池
      钙钛矿/晶硅叠层太阳能电池的工作原理是利用不同的带隙吸收不同的太阳光光谱,提高电池的转化效率。将钙钛矿电池与硅电池按能隙从大到小的顺序从外向里叠合起来,让短波长的光被最外侧的宽带隙钙钛矿太阳能电池吸收,波长较长的光能够透射进去让窄带隙的硅太阳能电池吸收,这就有可能最大限度地将光能变成电能,大大地提高了太阳光谱的利用率、电池的性能和稳定性。当钙钛矿的禁带宽度为1.55 eV时,它可以吸收波长小于800 nm 的光子,而带隙为1.12 eV 的硅电池可吸收波长小于1100 nm 的光子。当两者构成叠层电池时,二者吸收光谱互补,不但大大提高了太阳光谱的利用率,而且降低了制备成本。White等人系统地研究了顶电池的带隙、吸收系数、扩散长度和光致发光效率对高效晶硅叠层电池效率的影响,使用光致发光效率来表征载流子的复合,其中光致发光效率为辐射复合与整体复合的比;也可由电池的光致发光效率推导出开路电压,且顶电池的带隙随着光致发光效率的减少而增加,当扩散长度在100 nm左右,光致发光效率Φ为10- 5,禁带宽度范围在1.5—2.5 eV时,叠层电池效率可达到30%以上。Lal 等人采用满足上述条件的钙钛矿电池为顶电池制备钙钛矿/晶硅叠层电池, 得出当顶电池光吸收层CH3NH3PbI3的禁带宽度Eg=1.55 eV,载流子的扩散长度小于100 nm 时, 叠层电池效率可超过30%;当光吸收层CH3NH3PbIxCl1-x (载流子扩散长度大于1000 nm)的禁带宽度Eg=1.7 eV 时,具有良好的光子管理的叠层电池的效率可超过35%。


  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。

本帖被以下淘专辑推荐:

分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖1
回复

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-4-19 18:55 , Processed in 0.089420 second(s), 41 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表