找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 893|回复: 0
打印 上一主题 下一主题

[材料资讯] 李辉课题组在多个期刊连续发表电化学合成氨研究进展

[复制链接]

4

主题

9

帖子

11

积分

新手上路

Rank: 1

积分
11
跳转到指定楼层
楼主
发表于 2019-9-13 09:11:13 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式

材料科学与工程系(下简称“材料系”)和香港科技大学联合培养的2016级博士生姚瑶,在材料系讲席教授李辉,机械与能源工程系讲席教授、加拿大工程院院士王海江和香港科技大学化学与生物工程系教授邵敏华的联合指导下,就氮气电化学还原反应的反应机理和催化剂设计开展了一系列该领域的前沿性研究。研究成果在国际顶级化学期刊《美国化学会志》(Journal of the American Chemical Society)及《美国化学会能源快报》(ACS Energy Letter)、Small MethodsElectrochemcial Energy Review上先后发表。

氨是一种无碳的氢能载体,具有高能量密度(4.32 kWh L-1)、易液化、易存储运输、可解离生成氢气等优点。在传统工业中,氨主要是通过Harbor-Bosch方法来生产。在这一方法中,首先需要利用天然气或煤的蒸汽重整制备氢气,再在高温高压的条件下利用氢气和氮气来合成氨。

目前,工业合成氨所导致的CO2排放量和能耗分别占全球总量的0.5%和2%。因此,近年来许多小组开始致力于利用可再生能源来合成氨的研究,以期解决合成氨过程中的能耗和CO2排放量大等问题。        

氮气电化学还原反应利用氮气和水来合成氨气,可以直接将可再生能源产生的电能转化为易于储存和运输的氨气,并保证二氧化碳的零排放,为解决当前严峻的能源和环境问题提供了新的思路.这项技术受到了研究者的广泛关注,但目前的研究状态相比实际应用还有较大的距离。

姚瑶介绍,当前众多研究者致力于高效氮气还原电催化剂的合成,以期提高催化剂对氮气催化反应的选择性和反应速率,但由于目前人们对该反应机理缺乏深刻的理解,很难实现有的放矢地理性设计新型的氮还原电催化剂。


团队利用表面增强红外技术,首次对金表面的氮气电化学还原反应机理进行了深入研究。团队在金表面第一次检测到氮气电化学还原反应的重要中间物种*N2Hy(3≤y≤4),表明在金表面,氮气的电化学还原反应遵循间接反应途径。也就是说,氮气分子中的N≡N键是在氢化还原的过程中逐一断裂的,并最终生成肼(N2H4)和氨(NH3)。

该工作进一步拓宽了现场全内反射-表面增强红外光谱技术在电化学反应机理中的应用,首次揭示了氮气在金表面的电化学还原反应路径,并对高效氮气还原催化剂的合成提供了思路。相关成果发表在《美国化学会志》上。

在金属钌表面,另一种不稳定的中间产物*N2Hx (0≤x≤2)在酸性电解质中低于0.2 V的电位下被检测到。电化学原位红外光谱的结果表明,该中间产物可以被进一步还原成*N2Hy(3≤y≤4),或者断裂成*NH2。此外它也可以从钌表面脱附。由于其极不稳定,甚至比氢更活泼,在它从电极表面脱附后会直接在电解液中解离为氨和氮气。这也解释了在钌基催化剂表面电化学合成氨的过电位很低的原因。 另外,团队还发现氮气分子在钌表面吸附与否与电解质有关。在酸性电解质中,氮气分子倾向于吸附在金属钌表面;而在碱性电解质中,并没有检测到氮气分子在金属钌上的吸附。这也是钌基催化剂的氮气还原活性在酸性电解质而非碱性电解质中最好的原因。相关成果发表在《美国化学会能源快报》上,并成为该期刊“Most Read Articles for previous 30 days”。

此外,研究还表明,氮氧化铬(CrO0.66N0.56)纳米颗粒具有优异的氮气还原催化活性。在自制的质子交换膜电解池装置中,氨气生成速率在2V时可达8.9×10-11 mol s-1 cm-2 和15.56μg h-1 mg-1,其最高库伦效率在1.8V时达到了6.7%。在相同测试条件下,氮氧化铬催化性能远优于氮化铬(CrN)。研究发现,氮化物的部分氧化使得氮氧化铬催化剂表面的电子特性发生变化,从而提高氮还原的催化活性。此外,相对于贵金属催化剂Pt/C和Pd/C,氮氧化铬的氮气还原催化活性也更好。

该研究表明,部分氧化是提高金属氮化物催化性能的一种可行途径。该研究发表在Small Methods上。团队还受Electrochemical Energy Reviews期刊邀请,撰写了氮还原综述。

该研究获得了深圳市孔雀团队、广东省创新创业团队、深圳市氢能重点实验室、深圳市发展和改革委员会-氢能与燃料电池学科建设、以及广东省电驱动力能源材料重点实验室的资助。

论文链接:

1、https://pubs.acs.org/doi/10.1021/jacs.7b12101

2、https://onlinelibrary.wiley.com/doi/abs/10.1002/smtd.201800324

3、https://pubs.acs.org/doi/10.1021/acsenergylett.9b00699


李辉, 讲席教授,于2015年10月加入南方科技大学材料科学与工程系。教授于1987年和1990年分别获清华大学化学工程学士学位和硕士学位,2006年获加拿大英属哥伦比亚大学(UBC)的电化学工程博士学位。2006年4月~2007年4月在加拿大英属哥伦比亚大学(UBC)清洁能源中心进行博士后研究工作。从2007年加入加拿大国家研究院燃料电池创新研究所,先后担任多项重要国家研究项目及国际合作项目的技术负责人,包括与美国能源部(US DOE)的合作项目,与德国国家航空研究中心(DRL)的合作项目,以及和处于世界领先地位的燃料电池公司(Ballard, Hydrogenics, AFCC, MBFC)的工业合作项目。在氢气质子交换膜燃料电池的设计、诊断和耐久性研究方面进行了深入的开拓性的研究,掌握了世界领先的燃料电池核心技术,开发出了独特的燃料电池系统的设计,发明了一系列有关燃料电池的测试诊断工具,深入研究了燃料电池性能衰减的机理和提高耐久性的方法,发表了许多有关燃料电池的优秀论文和专著,赢得了燃料电池国际专家的荣誉,曾经多次被同行国际专家邀请为他们的著作撰写章节。


氨是世界上产量最大的化工产品之一,在全球经济中占有重要地位.传统的Haber-Bosch合成氨工艺需要在高温高压下进行,并且氢的平衡转化率低、能耗高、污染严重.电化学方法因可实现氨的常温常压合成而成为备受关注的研究领域.电化学合成氨的关键在于选择合适的电解质、制备电极及电催化剂,并将其有机组合在一起构建成高效稳定的电解池体系



  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。

本帖被以下淘专辑推荐:

分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖1
回复

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-4-19 11:18 , Processed in 0.145434 second(s), 41 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表