找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 1484|回复: 1

[专家学者] 南开大学刘遵峰

[复制链接]

21

主题

25

帖子

29

积分

新手上路

Rank: 1

积分
29
发表于 2019-3-18 08:45:09 | 显示全部楼层 |阅读模式
刘遵峰,南开大学教授,天津市青年##。共发表SCI论文49篇,累计引用7900多次(谷歌学术,截至2017.11),H因子24。其中以第一作者和通讯作者在Science, Adv Mater, Adv Funct Mater, Nano Res, Biomacromolecules等国际学术SCI期刊上发表研究论文20多篇。任Nanoscience and Nanotechnology, HOAJ Biology, IJRDM期刊编委,IEEE,ACS,Graphene flagship,NVVM等学术协会会员。其最新成果“大形变导电弹性体”被《Discovery Magazine》入选2015年度全球Top 100重大科学发现,在国内外学术会议做大会报告和邀请报告24次。刘遵峰实验室的主要科研方向是弹性器件、人工肌肉、可穿戴设备、传感器等。

刘遵峰

刘遵峰
liuzunfeng@nankai.edu.cn
教育背景
1998-2008年就读于南开大学化学学院,获化学学士、高分子材料与物理硕士、博士学位。
2008-2013年在荷兰莱顿大学、荷兰鹿特丹医学研究中心(Erasmus Medical center)任项目科学家,主持2009年荷兰国家杰出青年基金(Veni grant)等。
2013-2016年任常州大学教授,被评为江苏省特聘教授,双创人才,常州市十佳科技工作者。
2016.6-至今 南开大学教授
另外,2013-2015年在美国德克萨斯达拉斯分校纳米技术研究所任助理科学家。师从美国工程院院士Ray Baughman。

学术兼职
1、Energy Materials期刊编委
2、HOAJ Biology 期刊编委
3、International Journal of Respiratory Disease Care & Medicine (IJRDM) 期刊编委
4、IEEE,ACS,Graphene flagship,RSC、NVVM等学术协会会员
5、The 4th international Congress on Advanced Materials 2018 会议Co-chairs.

荣誉称号
1、江苏省特聘教授
2、2015年江苏省高层次创业创新计划引进人才
3、2014-2015年度常州市十佳科技工作者
4、2016年天津市青年##计划
5、论文《Hierarchically Buckled Fibers for Superelastic Electronics, Sensors, and Muscles》被美国《discover magazine》评为 2015“TOP 100”Scientific discoveries。
6、2016 年度第十二届江苏省优秀科技工作者
7、2018年常州市第二批科技智库专家
8、2018年天津市杰出青年基金获得者
9、国家第四批“万人计划”青年拔尖人才


主要研究方向

1. 先进碳材料的制备与应用

2. 导电弹性体及其柔性器件与设备

3. 人工肌肉的制备与应用

4. 超级电容器与新能源器件

5. 碳材料的生物医药应用

主要学术成果
发表论文
1. Hierarchically Buckled Fibers for Superelastic Electronics, Sensors, and Muscles. Science, 349, 400 (2015)
Zunfeng Liu, Shaoli Fang*, Francisco A. Moura, Jianning Ding, Nan Jiang, Jiangtao Di, Mei Zhang, Xavier Lepró, Douglas S. Galvão, Carter S. Haines, Ningyi Yuan, Shougen Yin, Duck Weon Lee, Run Wang, Hongyan Wang, Wei Lv, Chao Dong, Ruochuan Zhang, Mengjiao Chen, Qu Yin, Yuting Chong, Rui Zhang, Xuemin Wang, Márcio D. Lima, Raquel Ovalle-Robles, Dong Qian, Hongbing Lu, Ray H. Baughman*
2. Visualizing the localization of transfection complexes during graphene nanoparticle-based transfection,
Filip ten Bruggencate, Fabrice Laroche, Yue Zhang, Guoqiang Song, Shougen Yin,* Jan Pieter Abrahams*, and Zunfeng Liu*
J. Mater. Chem. B, 2013,1, 6353-6358
3. Capture of unstable protein complex on the streptavidin-coated single-walled carbon nanotubes
Zunfeng Liu*, Patrick Voskamp, Yue Zhang, Fuqiang Chu, Jan Pieter Abrahams
J. Nanopart. Res. 2013, 15,1582
4. Ultra-Small Graphene Oxide Functionalized with Polyethylenimine (PEI) allows very Efficient Gene delivery in Cell and Zebra Fish Embryos
Xiang Zhou, Fabrice Laroche, Patrick Voskamp, Tao Lu, Fuqiang Chu, Herman Spaink*, Jan Pieter Abrahams*, Zunfeng Liu*
  Nano Res. 2012. 5(10): 703–709
5. Single Walled Carbon Nanotubes as a Scaffold to Concentrate DNA for Studying DNA-Protein Interactions
   Zunfeng Liu*,Federica Galli, Willem-Jan Waterreus, Elisabeth Meulenbroek, Roman I. Koning, Gerda E. M. Lamers, René C. L. Olsthoorn, Navraj Pannu, Tjerk. H. Oosterkamp, Abraham J. Koster, Remus Th. Dame*, Jan Pieter Abrahams.  
ChemPhysChem, 2012, 13, 1569
6. Image Processing and Lattice Determination for Three-Dimensional Nanocrystals
  Linhua Jiang, Dilly Georgieva, Igor Nederlof, Zunfeng Liu, Jan Pieter Abrahams,
  Microscopy and Microanalysis, 2011, 17, 879-885
7. A Graphene Oxide•streptavidin Complex for Biorecognition – Towards Affinity Purification.
Zunfeng Liu*, Linhua Jiang, Federica Galli, Igor Nederlof, René C. L. Olsthoorn, Gerda E. M. Lamers, Tjerk. H. Oosterkamp, Jan Pieter Abrahams.
Adv. Funct. Mater. 2010, 20, 2857.
8. Stable Single-Walled Carbon Nanotube−Streptavidin Complex for Biorecognition
Zunfeng Liu*, Federica Galli, Kjeld G. H. Janssen, Linhua Jiang, Heiko J. van der Linden, Daniel C. de Geus, Patrick Voskamp, Maxim E. Kuil, Rene C. L. Olsthoorn, Tjerk. H. Oosterkamp, Thomas Hankemeier and Jan Pieter Abrahams
J. Phys. Chem. C 2010 114, 4345
9. Synthesis and Characterisation of the Isolated Straight Polymer Chain inside of Single-Walled Carbon Nanotubes
Zunfeng Liu, Xiaoyan Zhang, Xiaoying Yang, Yanfeng Ma, Yi Huang, Bin Wang, Yongsheng Chen, and Jing Sheng
J. Nanosci. Nanotechnol. 2010 10, 5570.
10. A novel approximation method of CTF amplitude correction for 3D single particle reconstruction
Linhua Jiang, Zunfeng Liu, Dilyana Georgieva, Maxim E. Kuil, Jan Pieter Abrahams
Ultramicroscopy 2010, 110,350
11. Buffer Layer of PEDOT: PSS/Graphene Composite for Polymer Solar Cells
Bin Yin, Qian Liu, Liying Yang, Xiaoming Wu, Zunfeng Liu, Yulin Hua, Shougen Yin, and Yongsheng Chen
J. Nanosci. Nanotechnol. 2010, 10, 1934
12. Fabrication and Evaluation of Solution-Processed Reduced Graphene Oxide Electrodes for p- and n-Channel Bottom-Contact Organic Thin-Film Transistors
Hctor A. Becerril, Randall M. Stoltenberg, Ming Lee Tang, Mark E. Roberts, Zunfeng Liu, Yongsheng Chen, Do Hwan Kim, Bang-Lin Lee, Sangyoon Lee, and Zhenan Bao
ACS Nano, 2010, 4 , 6343
13. Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes
Junbo Wu, Mukul Agrawal, Hctor A. Becerril, Zhenan Bao, Zunfeng Liu, Yongsheng Chen and Peter Peumans
ACS Nano, 2009, 4, pp 43
14. Polymer photovoltaic cell based on a solution processable graphene and P3HT
Qian Liu, Zunfeng Liu, Xiaoyan Zhang, Liying Yang, Nan Zhang, Guiling Pan, Shougen Yin, Yongsheng Chen, Jun Wei
Adv. Funct. Mater. 2009, 19, 894
15. Electromagnetic interference shielding of graphene/epoxy composites
Jiajie Liang, Yan Wang, Yi Huang, Yanfeng Ma, Zunfeng Liu, Jinming Cai, Chendong Zhang, Hongjun Gao, Yongsheng Chen
Carbon 2009, 47, 922
16. Synthesis and characterization of a graphene-C60 hybrid material
Xiaoyan Zhang, Yi Huang, Yan Wang, Yanfeng Ma, Zunfeng Liu, Yongsheng Chen
Carbon 2009, 47, 34
17. Organic photovoltaic devices based on a novel acceptor material: graphene
Zunfeng Liu, Qian Liu, Yi Huang, Yanfeng Ma, Shougen Yin, Xiaoyan Zhang,
Wei Sun, Yongsheng Chen Adv. Mater. 2008, 20, 3924
18. Organic photovoltaic cells based on an acceptor of soluble graphene
Qian Liu, Zunfeng Liu, Xiaoyan Zhang, Nan Zhang, Liying Yang, Shougen Yin, Yongsheng Chen
Appl. Phys. Lett. 2008, 92, 223303
19. Photovoltaic device based on poly(phenyleneethynylene)/SWNTs composite active layer
Qian Liu, Jie Mao, Zunfeng Liu, Nan Zhang, Yu Wang, Liying Yang, Shougen Yin, Yongsheng Chen
Nanotechnology 2008 19 115601
20. High efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide
Xiaoying Yang, Xiaoyan Zhang, Zunfeng Liu, Yanfeng Ma, Yi Huang, Yongsheng Chen
J. Phys. Chem. C 2008, 112, 17554
21. Evaluation of solution-processed reduced graphene oxide films as transparent conductors Héctor A. Becerril, Jie Mao, Zunfeng Liu, Randall M. Stoltenberg, Zhenan Bao, Yongsheng Chen ACS Nano 2008, 2, 463
22. Organic solar cells with solution-processed graphene transparent electrodes
Junbo Wu, Héctor A. Becerril, Zhenan Bao, Zunfeng Liu, Yongsheng Chen, Peter Peumans
Appl. Phys. Lett. 2008, 92, 263302
23. Multi-functionalized single-walled carbon nanotubes as tumor cell targeting biological transporters
Xiaoying Yang, Zhuohan Zhang, Zunfeng Liu, Yanfeng Ma, Rongcun Yang, Yongsheng Chen
J. Nanopart. Res. 2008, 10, 815
24. Performance improvement of bulk heterojunction organic photovoltaic cell by addition of a hole transport material
Nan Zhang, Qian Liu, Jie Mao, Zunfeng Liu, Yu Wang, Liying Yang, Shougen Yin, Yongsheng Chen
Chin. Phys. Lett. 2008, 25, 1091
25. A novel soluble tin(IV) porphyrin modified single-walled carbon nanotube nanohybrid with light harvesting properties
Dong-Mei Ren, Zheng Guo, Feng Du, Zunfeng Liu, Zaichun Zhou, Xiuying Shi, Yongsheng Chen, Jianyu Zheng
Int. J. Mol. Sci. 2008, 9, 45
26. Distortion of carbon nanotube array and its influence on carbon nanotube growth and termination
Jun Wu, Yanfeng Ma, Yi Huang, Zunfeng Liu, Yongsheng Chen
Colloids. Surf., A 2008, 313-314, 13
27. A water-soluble hybrid material of single-walled carbon nanotubes with an amphiphilic poly(phenyleneethynylene): preparation, characterization, and photovoltaic properties.
Jie Mao, Qian Liu, Xin Lv, Zunfeng Liu, Yi Huang, Yanfeng Ma, Yongsheng Chen, Shougen Yin
J. Nanosci. and Nanotech. 2007, 7, 2709
28. Microwave absorption of single-walled carbon nanotubes/soluble cross-linked polyurethane composites
Zunfeng Liu, Gang Bai, Yi Huang, Feifei Li, Yanfeng Ma, Tianying Guo, Xiaobo He, Xiao Lin, Hongjun Gao, Yongsheng Chen
J. Phys. Chem. C 2007, 111, 13696
29. Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites
Zunfeng Liu, Gang Bai, Yi Huang, Yanfeng Ma, Feng Du, Feifei Li, Tianying Guo, Yongsheng Chen
Carbon 2007, 45, 821
30. DNA electrochemical sensor based on an adduct of single-walled carbon nanotubes and ferrocene
Xiaoying Yang, Yanhong Lu, Yanfeng Ma, Zunfeng Liu, Feng Du, Yongsheng Chen
Biotechnol. Lett. 2007, 29, 1775
31. Self-assembled branched nanostructures of single-walled carbon nanotubes with DNA as linkers
Yanhong Lu, Xiaoying Yang, Yanfeng Ma, Feng Du, Zunfeng Liu, Yongsheng Chen
Chem. Phys. Lett. 2006, 419, 390
32. Special solution behavior of soluble intramolecularly cross-linked macromolecule of polyurethane with a hexaethylene diamine chain extender
Fangxing Li*, Zunfeng Liu, Xiaohui Cheng, Shengnan Chen, Dongping Liu, Ruimin Sun, Jun Chen, Xueping Liu
Eur. Polym. J. 2006, 42, 1349
33. Synthesis and characterization of novel blood-compatible soluble chemically cross-linked polyurethanes with excellent mechanical performance for biomedical applications
Zunfeng Liu, Xiang Wu, Xiaoying Yang, Dongping Liu, Chen Jun, Ruimin Sun, Xueping Liu, Fangxing Li
Biomacromolecules 2005, 6, 1713
34. Preparation and size determination of soluble cross-linked macromolecule of polyurethane with an ethylene diamine chain extender
Fangxing Li*, Zunfeng Liu, Xueping Liu, Xiaoying Yang, Shengnan Chen, Yingli An, Ju Zuo, Binglin He
Macromelecules 2005, 38, 69
35. Preparation and size determination of soluble crosslinked macromolecule of polyurethane
Fangxing Li*, Zunfeng Liu, Haitao Qian, Jiaming Rui, Shengnan Chen, Ping Jiang, Yingli An, Huaifeng Mi
Macromolecules 2004, 37,764

申请专利
1.一种基于一维碳纳米材料的亲和性分离透射电镜支持膜
   刘遵峰,刘倩,王楠,专利申请号:201220160695.6,2012
2. 一种多功能化的石墨烯基因载体和基于该载体的基因转染试剂及其制备方法
  刘遵峰,刘倩,王楠,   专利申请号:201110372228.X, 2011
3.一种可提高基因转染效率的纳米粒子和基于该粒子的基因转染试剂的制备
   刘遵峰、贾凤美,   专利申请号:201210571278.5, 2012
4.一种低温下使用催化剂使木粉石墨化的方法
刘遵峰 贾凤美,   专利申请号:201310104626.2,2013
5.一种蛋白吸附载体的构建及其制备方法
刘遵峰 贾凤美 刘倩, 专利申请号:201310168576.4,2013
6.一种同步、简化的蛋白质研究方法及所需多功能载体的构建
   刘倩 刘遵峰贾凤美,  专利申请号: 201310224362.4,2013
7.一种高效、低毒的石墨烯多功能载体的构建及其制备方法
   贾凤美 刘遵峰刘倩,   专利申请号:201310729272.0,2013
8.一种提高蛋白纯化纯度的预处理方法
  刘遵峰 贾凤美刘倩,   专利申请号:201310756622.2,2013
9.一种稳定、新型的过氧化物酶测定用显色液
   刘遵峰 刘倩贾凤美 种玉婷,  专利申请号:201310756623.7,,2013
10.可进行蛋白质即时定位的多功能载体
   贾凤美 刘遵峰刘倩,   专利申请号:201410014475.6,2014

多次受邀参加国际性学术交流会,并作邀请报告:

1. Invited talk: A pipeline for intro-cellular protein purification
Zunfeng Liu,
Symposium on nanomaterials and life science, 2013, Apr. 18, Changhzou, China
2. Invited talk: Applications on carbon nanomaterials in fishing and delivery in cell biology studies
Zunfeng Liu
Week's Discoveries in Leiden University, 19 March ,2013, Leiden, NL
3. Invited talk: How to write a successful VENI grant proposal
Zunfeng Liu
CALN 2012 Annual Meeting, 2012, Nov, 24, Leiden, NL
4. Invited talk: Efficient gene delivery using graphene nanoparticles
Zunfeng Liu
Symposium on the Development of High Level Graphene industry, 2012, Jul, 18, Changzhou ,China


  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。
回复

使用道具 举报

5

主题

7

帖子

15

积分

新手上路

Rank: 1

积分
15
发表于 2019-4-27 10:39:58 | 显示全部楼层

常见的导电材料本身通常拉伸性较差,难以直接用于可穿戴电子器件。作为自然界常见的结构之一,褶皱结构具有良好的延展性与可变形性,在柔性可穿戴电子器件领域应用广泛。近日,南开大学药物化学生物学国家重点实验室的刘遵峰课题组系统总结了将褶皱结构引入到可穿戴电子器件的方法,并列举了其在各类柔性电子器件的应用。

导电材料

导电材料

本文首先列举了常见的各类纳米导体材料的力学性质以及组装形态,比较了包括二维薄膜导电材料、一维纳米线,以及零维纳米粒子在内的纳米材料用于制备褶皱结构的优势与难点。指出导电层的厚度以及导电层和弹性层的界面作用对褶皱的形貌、延展性和电学性能的循环特性有显著的影响。之后,本文总结了制备褶皱结构的各种方法,包括预拉伸-释放应变、机械压缩、溶剂或热诱导、模版法与3D打印技术等,以及综合使用多种方法形成多级褶皱结构的最新进展。其中预拉伸-释放应变是形成褶皱结构的最常用方法,通过调节预拉伸倍数、预拉伸方向、导电粒子排列与预拉伸方向的关系,可以得到一维、二维、多级褶皱等多种褶皱形貌。

在此基础上,本文概述了褶皱结构在弹性导线、应变传感器、能量采集器、晶体管、功能电极等可穿戴电子器件的应用。提出的褶皱结构的优势主要在以下几个方面:(1)提高可拉伸性,这有助于提高各类电子器件在大拉伸形变下的保持稳定的性能;(2)产生较大比表面积,这有助于提高可穿戴器件与生物界面的亲和力与柔顺性;(3)获得复杂且可控的表面形貌,这有助于提高应变传感器以及压敏传感器的性能;(4)提高与其他微纳米材料更强的吸附作用,这有助于提高各类检测器的灵敏度,在电生理学领域应用非常广泛。

最后,本文对褶皱结构用于可穿戴柔性电子器件领域进行了展望。认为褶皱结构的理论研究应当更加深入,褶皱结构也可以与其他结构,例如螺旋、折叠等结构混合使用,来提高电子器件的结构设计水平。低成本、高度可控的含有褶皱结构的电子器件的制备方法还有待进一步深入研究。

该成果在线发表在Small (DOI: 10.1002/smll.201804805)上。

刘遵峰,南开大学药物化学生物学国家重点实验室研究员,国家“万人计划”青年拔尖人才。主要研究领域为柔性智能材料、可穿戴设备、人工肌肉。累积发表SCI论文50余篇,他引6300余次,其中以第一作者或通讯作者在Science, Adv. Mater., Adv. Funct. Mater.等国际学术SCI期刊上发表研究论文20余篇,其中2015年发表在Science上关于褶皱结构的可拉伸弹性导体的文章被美国《DiscoverMagazine》评选为2015年度全球TOP100重大科学发现。


回复 支持 反对

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-3-29 08:26 , Processed in 0.120882 second(s), 39 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表